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Challenges
● Speech is an information-rich signal

● Nuisance factors unrelated to speaker identity entangled in signal
○ Channel factors

■ Acoustic noise (TV, babble etc.)
■ Reverberation

○ Content factors
■ Affective state (happy, angry etc.)
■ Linguistic content
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Disentangling speaker representations

Prior work

● Total Variability Modeling (i-vectors - Dehak et al., 2011)
○ Capture all factors of variability in total variability space
○ Perform additional channel compensation steps, such as length normalization

● Deep learning methods (x-vectors - Snyder et al., 2017)
○ Train deep models on artificially augmented audio using various noise and reverberation. 
○ Extract hidden layer representations as utterance-level features.

● More recent supervised domain adversarial training techniques (Bhattacharya et al., 2019)
○ Train models to discriminate speakers
○ Simultaneously made robust to “specific” factors of variability by training adversarially, such 

as known noise type or channel conditions.
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Proposed work
● Disentangle speech representations into two embeddings

○ Speaker factors
○ Nuisance factors

● No assumptions on specific factors of variability
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Disentangling speaker representations

Adversarial Training*

*Jaiswal, A., Wu, R.Y., Abd-Almageed, W. and Natarajan, P., 2018. Unsupervised adversarial invariance. In Advances in Neural Information Processing 
Systems (pp. 5092-5102).

Main model

Adversarial model

● h1 : speaker discriminative information

● h2 : nuisance information
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Dataset and Features

Training data (VoxCeleb1)
● Training set of VoxCeleb

○ Vox 1 (Dev)
○ Vox2 (Dev and test) 

● No artificial augmentation
● 1.2M data samples
● 7323 unique speakers

Input features
● x-vectors using pre-trained model2
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Evaluation data (VOiCES3)
● 4 rooms
● 12-18 microphones
● 200 unique speakers
● 2 subsets: Voices-dev, Voices-eval

1. Chung, J.S., Nagrani, A. and Zisserman, A., 2018. Voxceleb2: Deep speaker recognition. arXiv preprint arXiv:1806.05622.
2. https://kaldi-asr.org/models/m7
3. Richey, Colleen, Maria A. Barrios, Zeb Armstrong, Chris Bartels, Horacio Franco, Martin Graciarena, Aaron Lawson et al. "Voices obscured in complex 
environmental settings (voices) corpus." arXiv preprint arXiv:1804.05053 (2018).
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Results (Speaker Verification)

Noise type (near-mic) Noise type (far-mic) Mic placement

● Dimensionality reduction: Linear Discriminant Analysis (LDA)
○ x-vector - dimension 150, Proposed - dimension 96

● Verification scoring: Probabilistic LDA (PLDA)
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Conclusions
● Proposed novel speaker embeddings 

○ Disentangled speaker and nuisance factors from speaker embeddings

○ No prior knowledge of specific nuisance factors during training

● Improves speaker verification performance in challenging conditions

○ Particularly babble noise (10% EER) and far-field recording conditions (15% EER)

● Improves speaker diarization performance on AMI meeting corpus (37% DER)
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Hey Alexa! Order shoes Sure, Amy. 
Which ones?

Future work
● Improve performance in babble noise scenario

● Evaluate disentangled speaker embeddings in presence of other nuisance factors, such as 
affective state, lexical content

● Train with more basic speech representations, which contain more variability useful for 
disentangling

Amy

Conclusions
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