

School of Engineering

Robust speaker recognition using unsupervised adversarial invariance

Raghuveer Peri, Monisankha Pal, Arindam Jati, Krishna Somandepalli, Shrikanth Narayanan

Presented by

Raghuveer Peri Signal Analysis and Interpretation Laboratory University of Southern California

Goal

Extract robust, low-dimensional, speaker-discriminative representations ("speaker embeddings")

from speech signal

Goal

Extract robust, low-dimensional, speaker-discriminative representations ("*speaker embeddings*") from speech signal

- Automatic Speaker Verification (ASV): Verify identity of person from speech signal
- Speaker diarization: Determine who spoke when in multi-party conversations
- Automatic Speech Recognition: Speaker-adapted speech recognition models

Goal

Extract robust, low-dimensional, speaker-discriminative representations ("*speaker embeddings*") from speech signal

- Automatic Speaker Verification (ASV): Verify identity of person from speech signal
- Speaker diarization: Determine who spoke when in multi-party conversations
- Automatic Speech Recognition: Speaker-adapted speech recognition models

		ASV system
Typical speaker verification pipeline		
Test utterance	Speaker embedding extractor	

SAIL

Goal

Extract robust, low-dimensional, speaker-discriminative representations ("*speaker embeddings*") from speech signal

- Automatic Speaker Verification (ASV): Verify identity of person from speech signal
- Speaker diarization: Determine who spoke when in multi-party conversations
- Automatic Speech Recognition: Speaker-adapted speech recognition models

Typical speaker verification pipeline	Enrolment utterance	ASV system
Test utterance	Speaker embedding extractor	

SAIL

Goal

Extract robust, low-dimensional, speaker-discriminative representations ("*speaker embeddings*") from speech signal

- Automatic Speaker Verification (ASV): Verify identity of person from speech signal
- Speaker diarization: Determine who spoke when in multi-party conversations
- Automatic Speech Recognition: Speaker-adapted speech recognition models

Challenges

- Speech is an information-rich signal
- Nuisance factors unrelated to speaker identity entangled in signal
 - Channel factors
 - Acoustic noise (TV, babble etc.)
 - Reverberation
 - Content factors
 - Affective state (happy, angry etc.)
 - Linguistic content

Challenges

- Speech is an information-rich signal
- Nuisance factors unrelated to speaker identity entangled in signal
 - Channel factors
 - Acoustic noise (TV, babble etc.)
 - Reverberation
 - Content factors
 - Affective state (happy, angry etc.)
 - Linguistic content

Challenges

- Speech is an information-rich signal
- Nuisance factors unrelated to speaker identity entangled in signal
 - Channel factors
 - Acoustic noise (TV, babble etc.)
 - Reverberation
 - Content factors
 - Affective state (happy, angry etc.)
 - Linguistic content

Prior work

- Total Variability Modeling (i-vectors *Dehak et al., 2011*)
 - Capture all factors of variability in total variability space
 - Perform additional channel compensation steps, such as length normalization
- Deep learning methods (x-vectors Snyder et al., 2017)
 - Train deep models on artificially augmented audio using various noise and reverberation.
 - Extract hidden layer representations as utterance-level features.
- More recent supervised domain adversarial training techniques (Bhattacharya et al., 2019)
 - Train models to discriminate speakers

Viterhi

School of Engineering

• Simultaneously made robust to "specific" factors of variability by training adversarially, such as known noise type or channel conditions.

Prior work

- Total Variability Modeling (i-vectors Dehak et al., 2011)
 - Capture all factors of variability in total variability space
 - Perform additional channel compensation steps, such as length normalization
- Deep learning methods (x-vectors Snyder et al., 2017)
 - Train deep models on artificially augmented audio using various noise and reverberation.
 - Extract hidden layer representations as utterance-level features.
- More recent supervised domain adversarial training techniques (Bhattacharya et al., 2019)
 - Train models to discriminate speakers

Viterbi

School of Engineering

• Simultaneously made robust to "specific" factors of variability by training adversarially, such as known noise type or channel conditions.

Proposed work

- Disentangle speech representations into two embeddings
 - Speaker factors
 - Nuisance factors
- No assumptions on specific factors of variability

Input

- Speech representations (MFCC, x-vectors etc)
- Speaker labels

School of Engineering

ISCViterbi

Main model

- Predictor (*Pred*): Predicts speakers
- Decoder (*Dec*): Reconstruct input

Input

- Speech representations (MFCC, x-vectors etc)
- Speaker labels

School of Engineering

ISCViterbi

Main model

- Predictor (*Pred*): Predicts speakers
- Decoder (*Dec*): Reconstruct input

Adversarial model

 Disentanglers (*Dis*₁ and *Dis*₂): Make h₁ and h₂ poor predictors of each other

Input

- Speech representations (MFCC, x-vectors etc)
- Speaker labels

SCViterbi

School of Engineering

Main model

- Predictor (Pred): Predicts speakers
- Decoder (Dec): Reconstruct input

Adversarial model

 Disentanglers (*Dis*₁ and *Dis*₂): Make h₁ and h₂ poor predictors of each other

Adversarial Training*

$$L_{main} = \alpha L_{pred} \left(\mathbf{y}, \hat{\mathbf{y}} \right) + \beta L_{recon} \left(\mathbf{x}, \hat{\mathbf{x}} \right)$$

$$L_{adv} = L_{Dis1}(\mathbf{h}_2, \hat{\mathbf{h}}_2) + L_{Dis2}(\mathbf{h}_1, \hat{\mathbf{h}}_1)$$

$$\min_{\Theta_e,\Theta_d,\Theta_p} \max_{\Phi_{dis1},\Phi_{dis2}} L_{main} + \gamma L_{adv}$$

15 *Jaiswal, A., Wu, R.Y., Abd-Almageed, W. and Natarajan, P., 2018. Unsupervised adversarial invariance. In Advances in Neural Information Processing Systems (pp. 5092-5102).

Input

- Speech representations (MFCC, x-vectors etc)
- Speaker labels

SCViterbi

School of Engineering

Main model

- Predictor (Pred): Predicts speakers
- Decoder (Dec): Reconstruct input

Adversarial model

 Disentanglers (*Dis*₁ and *Dis*₂): Make h₁ and h₂ poor predictors of each other

Adversarial Training*

$$L_{main} = \alpha L_{pred} \left(\mathbf{y}, \hat{\mathbf{y}} \right) + \beta L_{recon} \left(\mathbf{x}, \hat{\mathbf{x}} \right)$$

$$L_{adv} = L_{Dis1}(\mathbf{h}_2, \hat{\mathbf{h}}_2) + L_{Dis2}(\mathbf{h}_1, \hat{\mathbf{h}}_1)$$

$$\min_{\Theta_e,\Theta_d,\Theta_p} \max_{\Phi_{dis1},\Phi_{dis2}} L_{main} + \gamma L_{adv}$$

16 *Jaiswal, A., Wu, R.Y., Abd-Almageed, W. and Natarajan, P., 2018. Unsupervised adversarial invariance. In Advances in Neural Information Processing Systems (pp. 5092-5102).

Input

- Speech representations (MFCC, x-vectors etc)
- Speaker labels

(--)

CViterbi

School of Engineering

Main model

- Predictor (Pred): Predicts speakers
- Decoder (Dec): Reconstruct input

Adversarial model

 Disentanglers (*Dis*₁ and *Dis*₂): Make h₁ and h₂ poor predictors of each other

Adversarial Training*

$$L_{main} = \alpha L_{pred} \left(\mathbf{y}, \hat{\mathbf{y}} \right) + \beta L_{recon} \left(\mathbf{x}, \hat{\mathbf{x}} \right)$$

$$L_{adv} = L_{Dis1}(\mathbf{h}_2, \hat{\mathbf{h}}_2) + L_{Dis2}(\mathbf{h}_1, \hat{\mathbf{h}}_1)$$

$$\min_{\Theta_d,\Theta_p} \max_{\Phi_{dis1},\Phi_{dis2}} L_{main} + \gamma L_{adv}$$

*Jaiswal, A., Wu, R.Y., Abd-Almageed, W. and Natarajan, P., 2018. Unsupervised adversarial invariance. In Advances in Neural Information Processing Systems (pp. 5092-5102).

School of Engineering

Dataset and Features

Training data (VoxCeleb¹)

- Training set of VoxCeleb
 - Vox 1 (Dev)
 - Vox2 (Dev and test)
- No artificial augmentation
- 1.2M data samples
- 7323 unique speakers

Input features

• x-vectors using pre-trained model²

School of Engineering

Dataset and Features

1. Chung, J.S., Nagrani, A. and Zisserman, A., 2018. Voxceleb2: Deep speaker recognition. arXiv preprint arXiv:1806.05622.

2. https://kaldi-asr.org/models/m7

3. Richey, Colleen, Maria A. Barrios, Zeb Armstrong, Chris Bartels, Horacio Franco, Martin Graciarena, Aaron Lawson et al. "Voices obscured in complex environmental settings (voices) corpus." *arXiv preprint arXiv:1804.05053* (2018).

- Dimensionality reduction: Linear Discriminant Analysis (LDA)
 - x-vector dimension 150, Proposed dimension 96
- Verification scoring: Probabilistic LDA (PLDA)

- Dimensionality reduction: Linear Discriminant Analysis (LDA)
 - x-vector dimension 150, Proposed dimension 96
- Verification scoring: Probabilistic LDA (PLDA)

- Dimensionality reduction: Linear Discriminant Analysis (LDA)
 - x-vector dimension 150, Proposed dimension 96
- Verification scoring: Probabilistic LDA (PLDA)

- Dimensionality reduction: Linear Discriminant Analysis (LDA)
 - x-vector dimension 150, Proposed dimension 96
- Verification scoring: Probabilistic LDA (PLDA)

School of Engineering

SAIL

- Dimensionality reduction: Linear Discriminant Analysis (LDA)
 - x-vector dimension 150, Proposed dimension 96
- Verification scoring: Probabilistic LDA (PLDA)

ISCViterbi

Speaker Diarization performance on AMI meeting corpus compared to two competitive baselines (oracle SAD, known num. speakers)

USCViterbi

School of Engineering

Avg. Diarization Error Rate (%)

Speaker Diarization performance on AMI meeting corpus compared to two competitive baselines (oracle SAD, known num. speakers)

USCViterbi

School of Engineering

Avg. Diarization Error Rate (%)

Conclusions

Speaker Diarization performance on AMI meeting corpus compared to two competitive baselines (oracle SAD, known num. speakers)

Conclusions

- Proposed novel speaker embeddings
 - Disentangled speaker and nuisance factors from speaker embeddings
 - No prior knowledge of specific nuisance factors during training

Conclusions

Speaker Diarization performance on AMI meeting corpus compared to two competitive baselines (oracle SAD, known num. speakers)

Conclusions

- Proposed novel speaker embeddings
 - Disentangled speaker and nuisance factors from speaker embeddings
 - No prior knowledge of specific nuisance factors during training
- Improves speaker verification performance in challenging conditions
 - Particularly babble noise (10% EER) and far-field recording conditions (15% EER)

Conclusions

Speaker Diarization performance on AMI meeting corpus compared to two competitive baselines (oracle SAD, known num. speakers)

Conclusions

- Proposed novel speaker embeddings
 - Disentangled speaker and nuisance factors from speaker embeddings
 - No prior knowledge of specific nuisance factors during training
- Improves speaker verification performance in challenging conditions
 - Particularly babble noise (10% EER) and far-field recording conditions (15% EER)
- Improves speaker diarization performance on AMI meeting corpus (37% DER)

Future work

- Improve performance in babble noise scenario
- Evaluate disentangled speaker embeddings in presence of other nuisance factors, such as affective state, lexical content
- Train with more basic speech representations, which contain more variability useful for disentangling

We gratefully acknowledge the support of USG for this work

Contact Info Name: Raghuveer Peri Email: rperi@usc.edu