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Challenges
Speech is an information-rich signal

Nuisance factors unrelated to speaker identity entangled in signal
o Channel factors
m Acoustic noise (TV, babble etc.)
m Reverberation
o Content factors
m Affective state (happy, angry etc.)
m Linguistic content

s N\
w C300--




USC Viterbi Introduction

School of Engineering

Al

-

\

Challenges
Speech is an information-rich signal

Nuisance factors unrelated to speaker identity entangled in signal
o Channel factors
m Acoustic noise (TV, babble etc.)
m Reverberation
o Content factors
m Affective state (happy, angry etc.)
m Linguistic content

s N\
w C300--

Sorry! Cannot verify
identity

Hey Alexa! Order shoes




USC Viterbi Introduction

School of Engineering

Al

-

\

Challenges
Speech is an information-rich signal

Nuisance factors unrelated to speaker identity entangled in signal
o Channel factors
m Acoustic noise (TV, babble etc.)
m Reverberation
o Content factors
m Affective state (happy, angry etc.)
m Linguistic content

s N\
w C300--

Sorry! Cannot verify
identity

Hey Alexa! Order shoes




School of Engineering

USC Viterbi Disentangling speaker representations @

/ Prior work

e Total Variability Modeling (i-vectors - Dehak et al., 2011)
o Capture all factors of variability in total variability space
o Perform additional channel compensation steps, such as length normalization

e Deep learning methods (x-vectors - Snyder et al., 2017)
o Train deep models on artificially augmented audio using various noise and reverberation.
o Extract hidden layer representations as utterance-level features.

e More recent supervised domain adversarial training techniques (Bhattacharya et al., 2019)
o Train models to discriminate speakers

\\ o  Simultaneously made robust to “specific” factors of variability by training adversarially, such/

as known noise type or channel conditions.
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Proposed work

e Disentangle speech representations into two embeddings
o Speaker factors
o Nuisance factors

\ e No assumptions on specific factors of variability /
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*Jaiswal, A., Wu, R.Y., Abd-Almageed, W. and Natarajan, P., 2018. Unsupervised adversarial invariance. In Advances in Neural Information Processing

Systems (pp. 5092-5102).
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o Vox 1 (Dev)
o Vox2 (Dev and test)
e No artificial augmentation
e 1.2M data samples
e 7323 unique speakers
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1. Chung, J.S., Nagrani, A. and Zisserman, A., 2018. Voxceleb2: Deep speaker recognition. arXiv preprint arXiv:1806.05622.

2. https://kaldi-asr.org/models/m7 19
3. Richey, Colleen, Maria A. Barrios, Zeb Armstrong, Chris Bartels, Horacio Franco, Martin Graciarena, Aaron Lawson et al. "Voices obscured in complex
environmental settings (voices) corpus." arXiv preprint arXiv:1804.05053 (2018).
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e Dimensionality reduction: Linear Discriminant Analysis (LDA)
o x-vector - dimension 150, Proposed - dimension 96
e \Verification scoring: Probabilistic LDA (PLDA)

Speaker verification performance on VOiICES-eval
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Dimensionality reduction: Linear Discriminant Analysis (LDA)
o x-vector - dimension 150, Proposed - dimension 96
Verification scoring: Probabilistic LDA (PLDA)
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Speaker Diarization performance on AMI meeting corpus compared to two
competitive baselines (oracle SAD, known num. speakers)
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/ Future work

e Improve performance in babble noise scenario

e Evaluate disentangled speaker embeddings in presence of other nuisance factors, such as
affective state, lexical content

e Train with more basic speech representations, which contain more variability useful for
K disentangling
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