Samsung Research

SMALL ENERGY MASKING FOR IMPROVED NEURAL NETWORK TRAINING FOR END-TO-END SPEECH RECOGNITION

Chanwoo Kim, Kwangyoun Kim, and Sathish Reddy Indurthi {chanw.com, ky85.kim, s.indurthi}@samsung.com

Contents

- Introduction
 - Regularization and data augmentation in neural network training
- Motivation of Small Energy Masking (SEM)
- Small energy masking algorithm
 - Algorithm overview
 - Structure of Small Energy Masking (SEM) algorithm
 - Spectrograms with different energy thresholds
- Experimental results
 - Word Error Rate (WER) dependence on the bounds of energy threshold
 - WER comparison between SEM, fixed threshold masking and random input dropout
 - Recognition result with a modified shallow fusion
- Conclusions

Introduction-Regularization and Data Augmentation

- Regularization
 - L1/L2 regularization
 - Dropout [N. Srivastava, et. al, JMLR, 2014]
- Data Augmentation
 - SpecAugment [D. S. Park, et. al., INTERSPEECH 2019]
 - Acoustic Simulator [C. Kim, et. al., INTERSPEECH 2017]
 - Vocal Tract Length Perturbation, Speed Perturbation, etc.
- Data augmetnation itself can be considered as a way of applying regularization.

Motivation of Small Energy Masking

- Regularization is important for training large-size neural network models.
- In the conventional input-dropout, masking is applied completely randomly to the input features.
- In speech features, time-frequency bins with small energy may be more adversely affected by distortion or noise [C. Kim and R. M. Stern, ASRU 2009].
- \rightarrow Applies masking more frequenty to time-frequency bins with smaller energy.

Motivation of Small Energy Masking- Filterbank Energy e[m, c] and Peak Filter Bank Energy e_{peak}

• The filter bank energy **e**[**m**, **c**] in each time-frequency bin is defined by:

Where

• The peak filterbank energy e_{peak} is defined to be the 95-percentile value of e[m, c] for each utterance. [C. Kim and R. M. Stern, ASRU 2009]

Motivation of Small Energy Masking-Distribution of Filterbank Energy

• η : The ratio of filterbank energy e[m, c] to the peak filterbank energy e_{peak} in dB:

$$\eta = f\left(e[m,c]\right) \coloneqq 10 \log_{10} \left(\frac{e[m,c]}{e_{\text{peak}}}\right)$$

• The Probability Density Function (PDF) of η is shown on the right-hand side:

To calculate the statistical information shown in this slide, and in the next slide, we randomly selected 1,000 utterances from the LibriSpeech training set.

The distribution mainly exists from -100 dB up to 20 dB.

Probability Density Function (PDF) of η

Motivation of Small Energy Masking - Cumulative density function and energy portion below the threshold

• The cumulative function η is shown on the right-hand side.

• We define $r_e(\eta_{th})$ as the portion of energy below the threshold η_{th} as shown blow:

$$r_e(\eta_{th}) = \frac{\sum_{f(e[m,c]) < \eta_{th}} e[m,c]}{\sum e[m,c]}$$

• From this figure, if we select time-frequency bins whose energy is 20 dB below from e_{peak} , they comprise roughly 70 percent of all the bins, and 60 percent of the energy.

Small Energy Masing Algorithm - Algorithm Overview

• Selects a random energy ratio threshold (let's ca η_{th}) for for each utterance uniformly from the following interval.

$$\eta_{th} \sim \mathcal{U}(\eta_a, \eta_b)$$

- \mathcal{U} : Uniform distribution
- η_a : The lower bound. We use the value of -80 dB.
- η_b : The upper bound. We use the value of 0 dB.
- All the feature values below this ratio threshold is masked to have zero values.
- The unmasked feature values are scaled so that the sum is maintained.

• As a baseline system, we use the following power-mel feature pipeline. [C. Kim et. al., ASRU 2019, C. Kim et. al. INTERSPEECH 2019]

• As a baseline system, we use the following power-mel feature pipeline. [C. Kim et. al., ASRU 2019, C. Kim et. al. INTERSPEECH 2019]

• As a baseline system, we use the following power-mel feature pipeline. [C. Kim et. al., ASRU 2019, C. Kim et. al. INTERSPEECH 2019]

• As a baseline system, we use the following power-mel feature pipeline. [C. Kim et. al., ASRU 2019, C. Kim et. al. INTERSPEECH 2019]

Small Energy Masing Algorithm - Original Spectrogram

The ratio of the number of masked time-frequency : 0 % The ratio of the masked energy : 0 %

Small Energy Masing Algorithm – Spectrogram with η_{th} of -40 dB

The ratio of the number of masked time-frequency bins : 38 % The ratio of the masked energy : 25 %

Small Energy Masing Algorithm – Spectrogram with η_{th} of -20 dB

The ratio of the number of masked time-frequency bins : 75 % The ratio of the masked energy : 62 %

Small Energy Masing Algorithm – Spectrogram with η_{th} of 0 dB

The ratio of the number of masked time-frequency bins : 95 % The ratio of the masked energy : 88 %

Experimental Results - Speech Recognition System Structure

- The speech recognition system is based on the attention-based encoder-decoder model, modified from our previous system[C. Kim et. al., ASRU 2019].
- 6 LSTM layers in the encoder, and 1 LSTM layer in the decoder are used. The unit size is 1024.
- Pre-training strategy is employed [A. Zeyer et. al. INTERSPEECH 2018].
- Power-mel feature is employed [C. Kim et. al. INTERSPEECH 2019].

Experimental Results - Small Energy Masking: Word Error Rate (WER) dependence on η_b

$$\eta_{th} \sim \mathcal{U}(\eta_a, \eta_b)$$

- In this experiment, η_a is fixed to at -80 dB.
- Dependence on η_b is tested.
- If η_b becomes larger than 20 dB, performance starts degrading.

η_b	-60 dB	-40 dB	-20 dB	0 dB	baseline
test-clean	4.03 %	4.05 %	3.89 %	3.72 %	4.19 %
test-other	13.64 %	13.69 %	12.74 %	11.65 %	13.47 %
average	8.84 %	8.87 %	8.32 %	7.69 %	8.83 %

Experimental Results - Small Energy Masking: dependence on η_a

 $\eta_{th} \sim \mathcal{U}(\eta_a) \eta_b)$

- In this experiment, η_b is fixed to at 0 dB.
- Dependence on η_a is tested.

η_a	-20 dB	-40 dB	-60 dB	-80 dB	baseline
test-clean	45.15 %	6.57 %	4.07 %	3.72 %	4.19 %
test-other	77.71 %	20.43 %	12.73 %	11.65 %	13.47 %
average	61.43 %	13.5 %	8.40 %	7.69 %	8.83 %

Experimental Results - Small Energy Masking: selection of η_a and η_b

- From the previous experiments, we observe that $\eta_a = -80 \text{ dB}$ $\eta_b = 0 \text{ dB}$ are good choices.
- From the following probability density function of η , this distribution covers the entire range.

The relative performance improvement over the baseline is 11.2 % and 13.5 % on LibriSpeech test-clean and test-other respectively.

Experimental Results – Fixed Threshold Masking

• What happens if we use a fixed threshold (η_{th}) rather than a random threshold?

η_{th}	baseline $-\infty dB$	-80 dB	-70 dB	-60 dB	-50 dB
test-clean	4.19 %	4.27 %	4.26 %	4.31 %	4.52 %
test-other	13.47 %	13.92 %	13.93 %	14.09 %	15.67 %
average	8.83 %	9.10 %	9.10 %	9.20 %	10.10 %

- As shown in the above table, fixed threshold masking always results in performance degradation.
- From this result, we may observe that the randomization of the threshold level plays a critically important role in obtaining good performance.

Experimental Results – Random input dropout

• We applied a conventional input dropout approach to the input layer with a different drop out rate *r*.

	baseline	r = 0.1	r = 0.2	r = 0.3
	r = 0	T = 0.1		
test-clean	4.19 %	4.03 %	4.29 %	4.27 %
test-other	13.47 %	13.18 %	13.77 %	14.59 %
average	8.83 %	8.61 %	9.03 %	9.43 %

 The best performance was obtained when r = 0.1. However, SEM shows 7.7 % and 11.6 % Relative WER (WERR) improvements over this random input dropout for the test-clean and testother respectively.

Experimental Results – Modified shallow fusion with a Transformer LM.

 We used the modified shallow fusion [C. Kim, et. al., INTERSPEECH 2019] with a Transformer LM [A. Vaswani, et. al., NIPS 2017].

$$y_{0:L}^{*} = \underset{y_{0:L}}{\arg \max} \sum_{l=0}^{L-1} \left[\log P(y_{l} | \boldsymbol{x}[0:M], y_{0:l}) - \lambda_{p} \log P(y_{l}) + \lambda_{lm} \log P(y_{l} | y_{0:l}) \right]$$

λ_p	0.003	0.003	0.003	0.003
$\lambda_{ m lm}$	0.36	0.4	0.44	0.48
test-clean	2.52 %	2.62 %	2.62 %	2.66 %
test-other	7.93 %	7.87 %	7.87 %	8.33 %
average	5.23 %	5.25 %	5.25 %	5.50 %

• When $\lambda_p = 0.003$ and $\lambda_{lm} = 0.4$ or 0.44, 2.62 % and 7.87 % WERs are obtained for LibriSpeech test-clean and test-other sets.

Conclusions

Motivation:

- Regularization is important for training the neural network model.
- Time frequency-bins with small energy may be more adversely affected by distortion or noise.

• Small Energy Masking (SEM) algorithm:

- A random energy threshold is generated from the uniform distribution.
- All the feature values below that threshold is masked to zero.
- The unmasked feature values are scaled so that the sum is maintained.

Experimental Results:

- SEM shows 11.2 % and 13.5 % Relative WER (WERR) improvements on the standard LibriSpeech test-clean and test-other sets over the baseline.
- SEM shows 7.7 % and 11.6 % Relative WER (WERR) improvements on the same LibriSpeech test-clean and testother sets over the random input dropout.
- With a modified shallow fusion with a Transformer-baesd LM, we achieved 2.62 % and 7.87 % WERs on the LibriSpeech test-clean and test-other sets.

References

- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," *Journal of Machine Learning Research*, vol. 15, pp. 1929–1958, 2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html
- [2] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le, "SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition," in *Proc. Interspeech 2019*, 2019, pp. 2613– 2617. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.2019-2680
- [3] C. Kim, A. Misra, K. Chin, T. Hughes, A. Narayanan, T. N. Sainath, and M. Bacchiani, "Generation of large-scale simulated utterances in virtual rooms to train deep-neural networks for far-field speech recognition in google home," in *Proc. Interspeech 2017*, 2017, pp. 379–383. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.2017-1510
- [4] C. Kim, K. Kumar and R. M. Stern, "Robust speech recognition using small power boosting algorithm," in *IEEE Automatic Speech Recognition and Un*derstanding Workshop (ASRU), Dec. 2009, pp. 243–248.

References

- [5] C. Kim, M. Kumar, K. Kim, and D. Gowda, "Power-law nonlinearity with maximally uniform distribution criterion for improved neural network training in automatic speech recognition," in 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Dec. 2019, pp. 988–995.
- [6] C. Kim, S. Kim, K. Kim, M. Kumar, J. Kim, K. Lee, C. Han, A. Garg, E. Kim, M. Shin, S. Singh, L. Heck, and D. Gowda, "End-to-end training of a large vocabulary end-to-end speech recognition system," in 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Dec. 2019, pp. 562–569.
- [7] A. Zeyer, K. Irie, R. Schlüter, and H. Ney, "Improved training of end-to-end attention models for speech recognition," in *INTERSPEECH-2018*, 2018, pp. 7–11. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.2018-1616
- [8] C. Kim, M. Shin, A. Garg, and D. Gowda, "Improved vocal tract length perturbation for a state-of-the-art end-to-end speech recognition system," in *INTERSPEECH-2019*, Graz, Austria, Sept. 2019, pp. 739–743. [Online]. Available: http://dx.doi.org/10.21437/Interspeech.2019-3227