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Introduction

Introduction

Frequency estimation is a crucial field in many areas of signal processing such
as audio signal processing, and radar. It is also related to direction of arrival
(DoA) estimation.
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Frequency estimation is a crucial field in many areas of signal processing such
as audio signal processing, and radar. It is also related to direction of arrival
(DoA) estimation.

Several algorithms have been proposed in the literature: MUSIC,
Root-MUSIC, ESPRIT → high computational complexity.

The discrete-time Fourier transform (DTFT) → low complexity, but becomes
biased due to the interactions of the different frequencies.

R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions Antennas and Propagation, 2011.
B.D Rao, K. Hari. Performance analysis of Root-MUSIC. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989.
A. Paulraj, R. Roy, T. Kailath. Estimation of signal parameter via rotational invariance techniques-ESPRIT. Circuits Systems and Computers, 1985.
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Introduction

Introduction

Golub and Pereyra stated that frequency estimation can be formulated as a
separable nonlinear least squares (SNLLS) fitting problems.

Such representation encourages the use of VP-like algorithms.

Singular value decomposition (SVD) methods → high computational
complexity.

G. H. Golub and V. Pereyra, “Separable nonlinear least squares: The variable projection method and its applications,” Inverse problems, vol. 19, no.
2, pp. R1–R26, 2003.
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Introduction

Introduction

We provide a formulation of the frequency estimation problem in the
framework of Γ-approximation → quantify the difficulty of the optimization.

We propose an alternative method that accelerates the computation of the
exact gradient.

Comparisons with other state-of-the-art methods are also provided.
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Numerical analysis of the frequency estimation problem

Numerical analysis

Let’s consider the γ-polynomials of order n:

σ(c, f) ≡ σ(c, f ; t) =
n∑
j=1

cjγ(fj ; t) (t ∈ R), (1)

c ∈ Cn.

a < f1 < f2 < . . . < fn < b is a subdivision of the interval (a, b) by n
distinct points.
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Numerical analysis of the frequency estimation problem

Numerical analysis

σ(c, f) ≡ σ(c, f ; t) =
n∑
j=1

cjγ(fj ; t) (t ∈ R) (1)

σ(c, f ; t) is the nonlinear model of a complex valued signal y.

the coefficients cj ’s denote complex amplitudes.

fj ∈ [0, 0.5] are the frequencies.

γ(fj ; t) = exp(i2πfjt).
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Efficient computation of the VP gradient

VP gradient

arg min
(c,f)∈Cn×sn

F (c, f) = arg min
(c,f)∈Cn×sn

‖y − σ(c, f)‖2
2 (2)

c(f) = Ψ†(f)y is the minimal least squares solution for a fixed f .

Ψ†(f) is the Moore–Penrose pseudoinverse.

Ψ(f) = [Ψ1, . . . ,Ψn] denotes the matrix functions and
Ψ1 = [1, ei2πf1 , . . . , ei2πf1(M−1)].

PΨ(f) = Ψ(f)Ψ†(f) is the orthogonal projector on the linear space spanned
by the columns of the matrix Ψ(f).

P⊥Ψ(f) = I−PΨ(f) denotes the projector on the orthogonal complement of
the column space of Ψ(f).
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Efficient computation of the VP gradient

VP gradient

The full functional problem:

arg min
(c,f)∈Cn×sn

F (c, f) = arg min
(c,f)∈Cn×sn

‖y − σ(c, f)‖2
2 (2)

c(f) = Ψ†(f)y is the minimal least squares solution for a fixed f .

The reduced functional problem:

arg min
f∈sn

F̃ (f) = arg min
f∈sn

‖y − σ(c(f), f)‖ 2
2 (3)
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Efficient computation of the VP gradient

VP gradient

Then the frequency parameters can be calculated by solving the following
optimization

arg min
f∈sn

∥∥y−Ψ(f)Ψ†(f)y
∥∥2

2 = arg min
f∈sn

∥∥∥P⊥Ψ(f)y
∥∥∥2

2
(4)

The resulting functional is a VP functional.

The kth coordinate of the gradient of the functional is given by

1
2∇F̃k =

[
−(PΨDkΨ† + (PΨDkΨ†)T )y)

]T P⊥Ψy, (5)

where Dk = ∂Ψ(f)/∂fk represents the matrix of partial derivatives of Ψ(f) with
respect to the single parameter fk.

G. H. Golub and V. Pereyra, “The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate,” SIAM Journal
on Numerical Analysis, vol. 10, no. 2, pp. 413–432, 1973.

D. P. O’Leary and B. W. Rust, “Variable Projection for Nonlinear Least Squares Problems,” Computational Optimization and Applications, vol. 54,
no. 3, pp. 579–593, 2013.
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Efficient computation of the VP gradient

Real representation of the problem (splitting into real R(·) and imaginary
I(·) components):

Ψ̃ =
[
R(Ψ) −I(Ψ)
I(Ψ) R(Ψ)

]
ỹ =

[
R(y)
I(y)

]
c̃ =

[
R(c)
I(c)

]
.

The SVD is replaced with a faster iterative calculation of the pseudoinverse.

Ψ̃† = (Ψ̃T Ψ̃)−1Ψ̃T

WQ = 2
M Ψ̃T Ψ̃→ W−1

Q︸ ︷︷ ︸
MATRIX INVERSION LEMMA

Ψ̃† = W−1
Q Ψ̃T

S. S. Abeysekera, “Least-squares multiple frequency estimation using recursive regression sum of squares,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2018, pp. 1–5.
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Efficient computation of the VP gradient

Iterative calculation of the pseudoinverse (ICP)

Algorithm 1 Iterative Computation of Pseudoinverse
Input: Ψ̃
Output: Ψ̃†
1: [M,Q] = size(Ψ̃)
2: WQ = 2

M
Ψ̃T Ψ̃

3: W−1
Q−1 ← 1

4: for k = 2 : Q do
5: xQ ←WQ(1 : k − 1, k)
6: δQ ← xTQW−1

Q−1xQ
7: 0← zeros(length(xQ), 1)
8: yQ ←W−1

Q−1xQ

9: W−1
Q−1 ←

[
W−1

Q−1 0
0T 0

]
+ 1

1−δQ

[
yQyTQ −yQ
−yHQ 1

]
10: end for
11: Ψ̃† = 1

2MW−1
Q−1Ψ̃T
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Efficient computation of the VP gradient

Iterative calculation of the pseudoinverse (ICP)

Initialization
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Efficient computation of the VP gradient

Iterative calculation of the pseudoinverse (ICP)

Matrix Inversion Lemma
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Efficient computation of the VP gradient

Iterative calculation of the pseudoinverse (ICP)

Pseudoinverse
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Efficient computation of the VP gradient

Iterative calculation of the pseudoinverse (ICP)
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Figure: Operations vs. the number of measurements M
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Simulation Results

Simulations Results

The performance is evaluated in terms of the mean square error (MSE)

MSE = 1
Rn

R∑
r=1

n∑
i=1
|f̂i,r − fi|2 (6)

between the correct frequencies fi, i = 1, 2, . . . , n and their estimates f̂i,r in
R = 200 runs.

The measurement noise samples are drawn from an i.i.d complex Gaussian
random process with zero mean and variance σ2.

All the amplitudes of the complex sinusoids were considered equal to one.

The number of steps of the VP algorithm was set to 20 for all the test cases.

We chose the DTFT estimate of the frequencies as initial points of the VP
optimization and we assumed that the number of frequencies is known.
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Simulation Results
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Figure: MSE vs SNR for a scenario with M = 30 for five frequencies.
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Simulation Results
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Figure: MSE vs SNR for a scenario with M = 30 for two closely spaced frequencies
f1 = 0.405, f2 = 0.45.

19 / 32



Simulation Results
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(a) MSE vs. 4f
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Figure: Analysis of the impact of 4f in the performance, for a scenario M = 30,
SNR=20dB, and two frequencies chosen such that the distance between them is equal to
4f .
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Simulation Results
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Simulation Results
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Figure: Analysis of the impact of 4f in the performance, for a scenario M = 30,
SNR=20dB, and two frequencies chosen such that the distance between them is equal to
4f .
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Simulation Results
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Figure: MSE vs. the number of frequencies for a scenario with M = 45 and SNR=15dB.
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Lethargy Theorem

Theorem (Jupp, “Lethargy Theorem”)

Across the main-faces s(p)
n (p = 2, . . . , n) of sn,

nTp∇F̃ (f) = 0,

where np is the unit outward normal to s(p)
n .

sn = {f ∈ Rn : 0 < f1 < f2 < . . . < fn < 0.5} represents the parameter
space.

sn = {f ∈ Rn : 0 ≤ f1 ≤ f2 ≤ . . . ≤ fn ≤ 0.5} is the closure of sn including
multiple confluent frequencies

D. L. B. Jupp, “The Lethargy Theorem – A Property of Approximation by γ-–Polynomials,” Journal of Approximation Theory, vol. 14, pp.
204–217, 1975.
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Lethargy Theorem

Theorem (Jupp, “Lethargy Theorem”)

Across the main-faces s(p)
n (p = 2, . . . , n) of sn,

nTp∇F̃ (f) = 0,

where np is the unit outward normal to s(p)
n .

The lethargy theorem has the following consequences:
the reduced and so the full functional has many stationary points on the
main-faces of sn.

F̃ (f) and F (c, f) are non-convex for any set of data, and any choice of
smooth convex norm.

numerical optimizers have poor convergence near the boundary of sn.

D. L. B. Jupp, “The Lethargy Theorem – A Property of Approximation by γ-–Polynomials,” Journal of Approximation Theory, vol. 14, pp.
204–217, 1975.

D. L. B. Jupp, “Approximation to data by splines with free knots,” SIAM Journal on Numerical Analysis, vol. 15, no. 2, pp. 328–343, 1978.
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Lethargy Theorem
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Figure: Values of F̃ (f), where the signal contains two normalized frequency components
f1 = 0.171 and f2 = 0.174.
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Conclusions

Conclusions

We have formulated the frequency estimation problem as an SNLLS problem.

We quantified the difficulty of the corresponding optimization problem by
applying a lethargy-type theorem.

Based on this representation, we have proposed a VP optimization for finding
the frequency parameters.

An efficient way of calculating the exact gradient of the VP functional has
been presented, with a lower computational cost than existing techniques.

Simulations have shown that the proposed estimator outperforms previously
reported techniques in scenarios with closely spaced frequencies and achieves
more accurate results in terms of the MSE.

The interactive version of the code is available at
https://codeocean.com/capsule/5263510/tree/v1
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Thanks!

yuneisy.garcia_guzman@jku.at
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