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Introduction

B High-fidelity text-to-speech (TTS) systems

B \WaveNet outperformed conventional

S systems in 2016 -> End-to-end neural TTS

B Tacotron 2 (+ WaveNet vocoder) J. Shen et al., ICASSP 2018

B Text (English) -> [Tacotron 2] -> mel-spectrogram -> [WaveNet vocoder] -> speech waveform

B Jointly optimizing text analysis, duration and acoustic models wi

% No text analysis, no phoneme alignment, and no fundamental frequency analysis

h a single neural network

Realizing high-fidelity speech synthesis comparable to human speech!!

B Problem

% NOT directly applied to pitch accent languages

B Tacotron 2 with full-context label input

B Capable for pitch accent languages (e. g. Japanese)
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¥ Realizing real-time neural TTS with Tacotron 2 and WaveGlow (Frame-level)

B Crucial problem for actual implementations
¥ Sometimes unstable in inference (skip or stop)
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Tacotron-based stable neural TTS model

T. Okamoto et al., ASRU 2019
B High-fidelity and stable acoustic model (AM)

B Conventional bidirectional LSTM-based duration model <- more stable compared with sequence-to-sequence models
¥ Trained with HMM-based forced alignment

B Tacotron-based acoustic model with full-context label input

¥ HMM-based forced alignment in training

% Predicted phoneme durations are used in inference
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High-fidelity, real-time and stable TTS can be realized with WaveGlow vocoder!!



Problems and purpose

B Problem in RNN-based models (Tacotron 2 and BLSTM+Taco2dec)

B Slower training period than CNN- and self-attention-based models (Transformer and FastSpeech)

B Problem in sequence-to-sequence models (Tacotron 2 and Transformer)

B Sometimes unstable in inference (skip or stop)

3 Stable inference with phoneme durations (BLSTM+Taco2dec and FastSpeech)

B Problems in self-attention-based acoustic models (Transformer and FastSpeech)
B Only phoneme input is investigated for English TTS

B Teacher-student training (teacher Transformer) is required for FastSpeech

B Purpose of this study

B Investigating Transformer- and FastSpeech-based AMs with full-context label input for pitch accent languages

B Introducing HMM-based phoneme alignment to Transformer- and FastSpeech-based AMs
¥ Stable inference for Transformer-based TTS

¥ Removing teacher-student training and duration predictor in FastSpeech



Transformer-based TTS with weighted forced attention

B Transformer-based TTS N. Li et al., AAAI 2019

Feedforward network and self-attention instead of RNN
¥ Faster training than RNN-based models (e. g. Tacotron 2)

% Only phoneme input is investigated for English TTS

B Proposed Transformer-based TTS

~ull-context label input for pitch accent languages

ntroducing wighted forced attention

¥ HMM-based forced alignment in training
% Duration predicted by conventional model in inference

¥ Both multihued attention and predicted duration are
simultaneously used with a weighting factor

¥ For case of w = 1, hidden features from encoder
s too redundant (ASRU 2019) -> importance of weighting

¥ Proposed AM can be trained without “stop token” loss
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High-fidelity and stable TTS with faster training than RNN-based models is expected!! 6




FastSpeech without duration predictor

B FastSpeech Y. Ren et al., NeurlPS 2019

B Feedforward
¥ Not only fast training but also fast inference

B Duration predict
3 Duration anc
B Teacher-student training for improving synthesis accuracy

ransformer without any recurrent connections

acoustic models are jointly trained

*
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B FastSpeech without duration predictor

B Duration and acoustic models are separately trained

alignment in training
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They are expected to concentrate to optimize only acoustic features for higher accuracy!! 7



Experimental conditions

B Speech corpus: Sampling frequency: 24 kHz

B Japanese female corpus: about 22 h (test set: 80 utterances)

B Acoustic models

M Input: full-context label vector (130 dim)
B Output acoustic feature: Mel-spectrograms (80 dim)
B Sequence-to-sequence models
% Tacotron 2 (Interspeech 2019), Transformer (FNN: default), Transformer (Convi1D used in FastSpeech)
B Pipeline models with BLSTM-based duration model
¥ BLSTM
¥ BLSTM+Taco2dec(ASRU 2019)
% Proposed Transformer with weighted forced attention (weightings are 0.2, 0.5, 0.7 and 1.0)
¥ FastSpeech (default) with HMM-based forced alignment without teacher Transformer
¥ Fastspeech without duration predictor
¥ Fastspeech with simple structure

B Neural vocoder: WaveGlow with 512 channels



Results of training period (TP) and real-time factor (RTF)

B Evaluation condition

Method TP (days) | AM RTF | Total RTF
B Using an NVIDIA Tesla V100 GPU in inference (A):Tacotron 2 24 0.063 0.13
B Simple PyTorch implementation (B):TF (FNN) 6 0.55 0.62
(C):TF (Conv1D) 6 0.55 0.62
_ (D):BLSTM 3 0.015 0.12
B Notations (E):BLSTM+Taco2dec | 12 0.061 0.13
B TF: Transformer (F)-(I): TF-WFA 6 0.55 0.62
B WFA: Weighted forced attention ():FS (Default) 6 0.004 0.070
B FS: FastSpeech (K):FS (W/O—DP) 6 0.004 0.072
(L):FS (Simple) 6 0.004 0.072
B DP: duration predictor oo o] 5 - 5000
WaveGlow vocoder 30 - 0.066

B Results

B All models can realize real-time neural TTS with a GPU although Transformer-based model is not so fast
B Transformer and FastSpeech can realize faster training than Tacotron 2 and BLSTM+Taco2dec
B FastSpeech can realize fastest inference speed compared with other AMs



MOS results

B Subjective evaluation

B Listening subjects: 20 Japanese native speakers
B 15 conditions x 20 utterances (successfully synthesized by all models) = 300 sentences / a subject
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B Proposed Transformer-based AM with a weighting factor of 0.5 can significantly outperform other models

B FastSpeech without duration predictor can realize higher synthesis quality than that with duration predictor

B Proposed Transformer-based AMs with weighted forced attention included some unsuccessfully synthesized samples
% Encoder and decoder attentions were not diagonal



Additional results (Not included in proceeding)

B Additional experiments after submission of ICASSP 2020

M Only phoneme input condition
B Parallel WaveGAN (PWG): R. Yamamoto et al., ICASSP 2020
¥ Training period: 2 days, Real-time factor: 0.031

B Small WaveGlow model with 256 channels

Only phoneme Full-context label input

Analysis-synthesis

¥ Training period: 12 days, Real-time factor: 0.030 s
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B Parallel WaveGAN and small WaveGlow can realize faster training and inference than original WaveGlow

B WaveGlow with 512 channels can realize higher synthesis quality than other models

B Importance of full-context label input for Japanese TTS
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Conclusions

B Transformer-based TTS with weighted forced attention

ransformer- and FastSpeech-based AMs with full-context label input can also be successfully trained

Proposed Transformer-based AM with a weighting factor of 0.5 can significantly improve synthesis accuracy

—astSpeech without duration predictor can realize higher synthesis quality than that with duration predictor

Proposed Transformer-based AMs with weighted forced attention cannot improve synthesis stability

Future work

mproving stability of transformer-based TTS for actual implementations by introducing trainable weighting factors

ntroducing weighted forced attention to Tacotron 2
B Introducing teacher-student training in FastSpeech-based AMs for higher synthesis accuracy

B Demo samples

B Synthesized speech samples used in experiments are available
https://ast-astrec.nict.go.jp/demo_samples/icassp_2020_okamoto/index.html
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