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Introduction



Spectral Clustering

Finding groups of highly similar objects in unlabeled datasets



When it comes to large-scale data - - -

m However, when it comes to large-scale data, the Spectral Clustering methods based on data
graph are computationally prohibitive.

m The time complexity of Spectral Clustering is O(n3).
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Anchors: representative data point

m A small number of anchor points often adequately cover the entire point cloud. K-means,
BKHK, - --




Anchors: representative data point

m The clustering problem based on data graph can be transformed into the optimization
problem related to the bipartite graph.

m Given the data point set X, the anchors set A and the edges set £ where the data points
belong to ¢ clusters, a bipartite graph can be denoted by B(X, A, £).
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Bipartite graph B = (X, A, E),
Where X = {x1, x5, X3, ..., Xp},
A= {alv az, .., am}
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Anchors: representative data point

m Denote Z € R™ ™ as the cross similarity matrix between data points and anchors. Thus

Z

the full adjacency matrix for the bipartite graph B can be denoted by B = T ,

where Z1 = 1.

m A theoretical analysis of the relationship between W = ZA~!Z7 and random walk pro-
vided by Liu et al.[1], where A = diag(Z*1) balances the popularity of the anchors.

m However, due to the special structure of the bipartite graph, there is no stable distribution
of the random walk process. The designed similarity matrix W may resulting in breaking

the independence of data points and leading to undesired artifacts for boundary samples.

"W. Liu, J. He, and S. Chang, “Large graph construction for scalable semi-supervised learning,” in Proc. ICML,
pp. 679-686, 2010.



How to balance the popularity of the anchors and the independence of the data points explicitly?



Our Method




Cross Similarity Matrix

The cross similarity matrix Z can be calculated as follows:

m For 4-th data point 7; , z;; > 0 if i-th point z; and j-th anchor a; is connected, otherwise
Zij =0.
. 2 .
m Define the distance between ; and a; as h(z;, a;) = [|2; — aj]|5. Denote a sort function

h; = 0(h;) which sorts the distance in ascending order. Following [2], 2;; can be computed

by

3l e w
ZZJ — (':L"“ uk+1) (':L"“ u?) ) (21)

Zf.,:l (iz(zz, Ukt1) — h (JZZ', uj/)>

’F. Nie, X. Wang, and H. Huang, “Clustering and projected clustering with adaptive neighbors,” in Proc. KDD,
pp. 977-986, 2014.




Symmetric Normalized Laplacian

m Denote Lgyy, = D2 BD™ 2, the normalized spectral clustering problem on B can be

written as follows .
min T (F' Lsyn, F)
F (2.2)
s.t. Fe Rmtmxe pTp— |

m B

Define the one-step transition probability matrix as P = D~! B, the spectral em-

bedding of data points based on the symmetric normalized Laplacian matrix of B
is equivalent to the spectral embedding on the data similarity matrix W € R™*"

obtained using the second-order transition probabilities.




Our Method

m Define the random walk normalized graph Laplacian as L, = D~'(D—B) = I- D~ 'B.
Due to D™ B is not symmetrical, the spectral embedding of the graph corresponding to

the random walk transition matrix can be obtained by solving the problem as follows:

DB+ BD !
n%nT%(FT<I—;;>P>.

st. Fe RUtmxe plp— 1

(2.3)

m The problem (2.4) seems complicated. While due to the special structure of the block

matrix of the bipartite graph, it can be reformulated as follows.
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Our Method

D
m The degree matrix of B can be written in the form of block matrix D = v

>

Dy
where d;; = Z;L:Jrlm bij, Dy € R™™, Dy € R™* ™, Rewrite F as the block matrix

U
V

F=|_1, (2.4)

where U € R™ ¢V € R™*¢,
m According to the definition of F'in Eq (2.4) and the structure of L,,, which is also a block

matrix, the problem (2.3) can be further rewritten as

I+ D}
max Tr [ 072 222 v |
U,v 2 (2.5)
st. Ue R™C Ve R™ UTU+ viv=1
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Our Method
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Figure 1: Comparison of three column normalization methods
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Our Method

Algorithm 1: Fast Spectral Clustering based on RandomWalk Laplacian (FRWL)

Input : Data matrix X € R¥*" Anchor matrix A € R ™ cluster number ¢, number

of nearest neighbor &
Output: c clusters
1 Construct a sparse cross similarity matrix Z € R™*"™ between data points and anchors,

with the similarity calculated according to Eq. (2.1).

2 Compute F' =

U*
V*] which is formed by the top c left and right singular vectors of

—1
Z <1+127v ) according to Eq. (2.5) respectively.

5 Each row of U* is a data point and apply k-means to get the clusters.
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Our Method

Matlab Code?

1 % Input: - 7Z: the initial cross similarity matrix between data ...
points and anchors

> % - ¢: the number of clusters

3 % Output: - clustering: the cluster assignment for each point

4

s Dv=diag(l./sum(Z,1))

6 U = mySVD(Z+Z+Dv,c+1);

UG, = [

s U=U./repmat (sqrt(sum(U.72,2)),1,¢c);

9 clustering=litekmeans (U,c, 'MaxIter',100, 'Replicates',10);

4https://github.com/CHL\X/R/ICASSP_FR\X/L
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https://github.com/CHLWR/ICASSP_FRWL

Experiments




Experiments on Real-world Datasets

Table 1: Statistic of Datasets

Dataset Samples Features Classes
USPS20 1854 256 10
Coil20 1440 1024 20
Palm 2000 256 100
Coil100 7200 1024 100
USPS 9298 256 10

Mnist 70000 784 10
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Experiments on Real-world Datasets

Table 2: Performance (ACC) on 6 data sets(%)

Dataset Nystrom LSC-K FSC FRWL-K FRWL-B
USPS20 66.03 68.68 65.43 65.49 70.81
Coil20 52.76 68.40 67.57 68.61 73.09
Palm 75.87 70.35 76.40 74.44 76.90
Coil100 41.19 51.55 54.85 55.13 55.01
USPS 65.78 69.12 70.90 70.80 68.64

Mnist 34.51 63.93 62.60 62.64 68.04
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Experiments on Real-world Datasets

Table 3: Performance (NMI) on 6 data sets(%)

Dataset Nystrom LSCK FSC FRWL-K FRWL-B
USPS20 65.73 67.79 63.39 63.57 72.57
Coil20 71.26 77.78 78.05 78.14 82.33
Palm 91.83 87.82 91.41 90.77 91.88
Coil100 68.51 75.38 77.29 77.46 78.11
USPS 61.51 68.87 67.87 67.56 71.64

Mnist 24.03 62.51 59.01 59.85 67.28
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Experiments on Real-world Datasets

Table 4: Running time on 6 data sets(s)

Dataset Nystrom LSCK FSC FRWL-K FRWL-B
USPS20 1.69 0.26 0.41 0.11 0.30
Coil20 1.53 0.26 0.99 0.11 0.31
Palm 1.18 0.63 0.83 0.40 0.56
Coil100 2.03 3.29 9.02 3.20 3.49
USPS 2.40 0.86 2.54 0.78 1.19

Mnist 6.44 11.39 67.39 14.72 13.70
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Experiments on Real-world Datasets
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Parameter sensitivity study of FRWL on USPS
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Conclusion

Fast Spectral Clustering based on the Random Walk Laplacian (FRWL) can explicitly balance
the popularity of anchors and the independence of data points, which is important for

clustering of boundary points (especially when there are many neighbor anchors).
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Thanks for your attention
Presenter: Cheng-Long Wang
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