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Introduction



Spectral Clustering

Finding groups of highly similar objects in unlabeled datasets

2



When it comes to large-scale data · · ·

However, when it comes to large-scale data, the Spectral Clustering methods based on data
graph are computationally prohibitive.
The time complexity of Spectral Clustering is O(n3).
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Anchors: representative data point

A small number of anchor points often adequately cover the entire point cloud. K-means,
BKHK, · · ·
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Anchors: representative data point

The clustering problem based on data graph can be transformed into the optimization
problem related to the bipartite graph.
Given the data point set X , the anchors set A and the edges set E where the data points
belong to c clusters, a bipartite graph can be denoted by B(X ,A, E).

Bipartite graph 𝐵 = (𝑋, 𝐴, 𝐸),
Where 𝑋 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 ,
𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚}

𝑛

𝑚

𝑚

𝑛

Affinity matrix 

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝑎1

𝑎4

𝑎3

𝑎2

5



Anchors: representative data point

Denote Z ∈ Rn×m as the cross similarity matrix between data points and anchors. Thus

the full adjacency matrix for the bipartite graph B can be denoted by B =

[
Z

ZT

]
,

where Z1 = 1.

A theoretical analysis of the relationship between W = Z∆−1ZT and random walk pro-
vided by Liu et al.[1], where ∆ = diag(ZT1) balances the popularity of the anchors.

However, due to the special structure of the bipartite graph, there is no stable distribution
of the random walk process. The designed similarity matrix W may resulting in breaking
the independence of data points and leading to undesired artifacts for boundary samples.

1W. Liu, J. He, and S. Chang, “Large graph construction for scalable semi-supervised learning,” in Proc. ICML,
pp. 679–686, 2010.
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Problem

How to balance the popularity of the anchors and the independence of the data points explicitly?
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Our Method



Cross Similarity Matrix

The cross similarity matrix Z can be calculated as follows:

For i-th data point xi , zij > 0 if i-th point xi and j-th anchor aj is connected, otherwise
zij = 0.

Define the distance between xi and aj as h(xi, aj) = ∥xi − aj∥2
2. Denote a sort function

ĥi = θ(hi)which sorts the distance in ascending order. Following [2], zij can be computed
by

zij =
ĥ (xi, uk+1)− ĥ (xi, uj)∑k

j′=1

(
ĥ (xi, uk+1)− ĥ

(
xi, uj′

)) . (2.1)

2F. Nie, X. Wang, and H. Huang, “Clustering and projected clustering with adaptive neighbors,” in Proc. KDD,
pp. 977–986, 2014.
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Symmetric Normalized Laplacian

Denote Lsym = D− 1
2 BD− 1

2 , the normalized spectral clustering problem on B can be
written as follows

min
F

Tr
(
FTLsymF

)
s.t. F ∈ R(n+m)×c,FTF = I.

(2.2)

Theorem

Define the one-step transition probability matrix as P = D−1B, the spectral em-
bedding of data points based on the symmetric normalized Laplacian matrix of B
is equivalent to the spectral embedding on the data similarity matrix W ∈ Rn×n

obtained using the second-order transition probabilities.
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Our Method

Define the random walk normalized graph Laplacian as Lrw = D−1(D−B) = I−D−1B.
Due to D−1B is not symmetrical, the spectral embedding of the graph corresponding to
the random walk transition matrix can be obtained by solving the problem as follows:

min
F

Tr
(

FT
(

I − D−1B + BD−1

2

)
F
)
.

s.t. F ∈ R(n+m)×c,FTF = I
(2.3)

The problem (2.4) seems complicated. While due to the special structure of the block
matrix of the bipartite graph, it can be reformulated as follows.
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Our Method

The degree matrix of B can be written in the form of block matrix D =

[
DU

DV

]
,

where dii =
∑n+m

j=1 bij, DU ∈ Rn×n, DV ∈ Rm×m. Rewrite F as the block matrix

F =

[
U
V

]
, (2.4)

where U ∈ Rn×c, V ∈ Rm×c.
According to the definition of F in Eq (2.4) and the structure of Lrw which is also a block
matrix, the problem (2.3) can be further rewritten as

max
U,V

Tr
(

UTZ
(

I + D−1
V

2

)
V
)
.

s.t. U ∈ Rn×c,V ∈ Rm×c,UTU + VTV = I
(2.5)
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Our Method
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Fig. 1. Comparison of different column normalization behav-
iors

Algorithm 1 Fast Spectral Clustering based on Random Walk
Laplacian (FRWL)
Input: Data matrix X ∈ Rd×n, Anchor matrix A ∈ Rd×m,

cluster number c, number of nearest neighbor k
Output: c clusters

1. Construct a sparse cross similarity matrix Z ∈ Rn×m

between data points and anchors, with the similarity calcu-
lated according to Eq. (1).

2. Compute F =

[
U∗

V ∗

]
which is formed by the top c left

and right singular vectors of Z(
I+D−1

V

2 ) according to Eq.
(8) respectively.
3. Performe k-means on U∗ to get the clusters.

Similarly as the solution in problem (4), the optimal solu-
tion U∗, V ∗ of problem (8) is U∗ =

√
2
2 U, V

∗ =
√
2
2 V , where

U, V are formed by the c top left and right singulat vectors of

Z(
I+D−1

V

2 ) respectively.

From a practical point of view, the difference of spectral
embedding between Lsym and Lrw is that the cross-matrix
performed SVD is conducted column semi-normalized in dif-
ferent levels. A comparison of different column normaliza-
tion behaviors is shown on Fig. 1. As we can see, when∑n

i=1 zij becomes large (which means many data points are

connected with ak), the j-th element of I+D−1
V

2 is larger than

the j-th element of D
−1
2

V . Meanwhile, the lower bound of
I+D−1

V

2 is 1
2 , which explicitly keeps the row connection infor-

mation partially and avoids the extreme situation when there
are too many data points connected with anchors. Compared

with D
−1
2

V , I+D−1
V

2 is a better column semi-normalization be-
havior for Z. Next, we will show the difference between the
results of Lsym and Lrw on the same anchor graph.

Table 1. Results of Numerical Simulations
Group Lsym Lrw

a 1 1 2 2 2 1 1 2 2 2
b 1 1 2 2 2 1 1 1 2 2
c 1 1 2 2 2 1 1 1 2 2
d 1 1 2 2 2 1 1 2 2 2
e 1 1 1 2 2 2 1 1 2 2 2 2

3.1. NUMERICAL SIMULATIONS

The numerical simulations of Lsym and Lrw will be com-
pared on a cross similarity matrix

Z = [z1, z2, z3, z4, z5]T

=
1

9


4 5 0 0
4 5 0 0
0 4 5 0
0 0 5 4
0 0 5 4

 (9)

where Z1 = 1. z3 is a boundary point crossing different
anchors.

The clustering results by conducting k-means on the spec-
tral embedding of Lsym and Lrw are the same, which are
shown in Group a of Tab. 1.

Group b: Set z3,1 = 1, z3,2 = 3.
Group c: Set z3,1 = 2, z3,2 = 2.
Group d: Set z3,1 = 3, z3,2 = 1.
Group e: Reset z3,1 = 0, z3,2 = 4. Add a vector zT6 to Z

with z6,k = z5,k where k = 1, ..., 4.
The clustering results of Group a,b,c,d show that the spec-

tral embedding of Lrw holds the connections in rows of Z in
some degree and is more sensitive to the change of weights in
the same row than Lsym. The clustering results of Group a,e
shows that the spectral embedding of Lrw can preserve more
the independence of data points than Lsym. The numerical
simulations show that Lrw can balance the popularity of an-
chors and the independence of data points explicitly, which is
especially important for the clustering of boundary points.

Based on the previous analysis, we propose Fast Spec-
tral Clustering based on Random Walk Laplacian (FRWL)
method. The algorithm is summarized in Algorithm 1. It’s
notable that the time complexity of our method is O(nmd +
m2n + m3) ,which is linear with respect to n which is com-
parable to LSC [7] and FSC [10].

4. EXPERIMENTS

In this section, we experimentally show the effectiveness and
efficiency of the proposed method.

Figure 1: Comparison of three column normalization methods
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Our Method

Algorithm 1: Fast Spectral Clustering based on RandomWalk Laplacian (FRWL)

Input : Data matrix X ∈ Rd×n, Anchor matrix A ∈ Rd×m, cluster number c, number
of nearest neighbor k

Output: c clusters
1 Construct a sparse cross similarity matrix Z ∈ Rn×m between data points and anchors,

with the similarity calculated according to Eq. (2.1).

2 Compute F =

[
U∗

V∗

]
which is formed by the top c left and right singular vectors of

Z
(

I+D−1
V

2

)
according to Eq. (2.5) respectively.

3 Each row of U∗ is a data point and apply k-means to get the clusters.
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Our Method

Matlab Code4

1 % Input : - Z : the i n i t i a l c ro s s s i m i l a r i t y matrix between data ...
po ints and anchors

2 % - c : the number o f c l u s t e r s
3 % Output : - c l u s t e r i n g : the c l u s t e r assignment f o r each point
4

5 Dv=diag (1 . /sum(Z , 1 ) )
6 U = mySVD(Z+Z∗Dv, c+1) ;
7 U( : , 1 ) = [ ] ;
8 U=U./repmat ( sqr t (sum( U. ^2 ,2) ) ,1 , c ) ;
9 c l u s t e r i n g=litekmeans (U, c , ' MaxIter ' ,100 , ' Rep l i cate s ' ,10) ;

4https://github.com/CHLWR/ICASSP_FRWL
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Experiments on Real-world Datasets

Table 1: Statistic of Datasets

Dataset Samples Features Classes

USPS20 1854 256 10
Coil20 1440 1024 20
Palm 2000 256 100

Coil100 7200 1024 100
USPS 9298 256 10
Mnist 70000 784 10
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Experiments on Real-world Datasets

Table 2: Performance (ACC) on 6 data sets(%)

Dataset Nystrom LSC-K FSC FRWL-K FRWL-B

USPS20 66.03 68.68 65.43 65.49 70.81
Coil20 52.76 68.40 67.57 68.61 73.09
Palm 75.87 70.35 76.40 74.44 76.90

Coil100 41.19 51.55 54.85 55.13 55.01
USPS 65.78 69.12 70.90 70.80 68.64
Mnist 34.51 63.93 62.60 62.64 68.04
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Experiments on Real-world Datasets

Table 3: Performance (NMI) on 6 data sets(%)

Dataset Nystrom LSC-K FSC FRWL-K FRWL-B

USPS20 65.73 67.79 63.39 63.57 72.57
Coil20 71.26 77.78 78.05 78.14 82.33
Palm 91.83 87.82 91.41 90.77 91.88

Coil100 68.51 75.38 77.29 77.46 78.11
USPS 61.51 68.87 67.87 67.56 71.64
Mnist 24.03 62.51 59.01 59.85 67.28
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Experiments on Real-world Datasets

Table 4: Running time on 6 data sets(s)

Dataset Nystrom LSC-K FSC FRWL-K FRWL-B

USPS20 1.69 0.26 0.41 0.11 0.30
Coil20 1.53 0.26 0.99 0.11 0.31
Palm 1.18 0.63 0.83 0.40 0.56

Coil100 2.03 3.29 9.02 3.20 3.49
USPS 2.40 0.86 2.54 0.78 1.19
Mnist 6.44 11.39 67.39 14.72 13.70
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Experiments on Real-world Datasets

Table 2. Statistic of Datasets
Dataset Samples Features Classes
USPS20 1854 256 10
Coil20 1440 1024 20
Palm 2000 256 100

Coil100 7200 1024 100
USPS 9298 256 10
Mnist 70000 784 10

Table 3. Performance (ACC) on 6 data sets(%)
Dataset Nystrom LSC-K FSC FRWL-K FRWL-B
USPS20 66.03 68.68 65.43 65.49 70.81
Coil20 52.76 68.40 67.57 68.61 73.09
Palm 75.87 70.35 76.40 74.44 76.90

Coil100 41.19 51.55 54.85 55.13 55.01
USPS 65.78 69.12 70.90 70.80 68.64
Mnist 34.51 63.93 62.60 62.64 68.04

4.1. DataSets

We evaluated the proposed clustering methods on 6 bench-
mark datasets,including handwritten digit (USPS20,USPS),
image datasets(Coil20, Coil100, Palm, Mnist). The detail of
all the datasets are summarized in Tab. 2.

4.2. Methods and Settings

The compared approaches and their parameter settings are
summarized as follows: 1) Nystrom [14], where we set the
parameter sigma to 2; 2) LSC-K [7], which use k-means to se-
lect anchors; 3) FS [10], which use a balanced kmeans BKHK
to select anchors. In the experiments, we set m = 1024 and k
= 5. For fairness, we used the same anchor points selected by
LSC-K and FS for FRWL respectively. We run all methods
50 times and record the mean ACCuracy (ACC) and Normal-
ized Mutual Information (NMI) as well as the running time
(we omit the time of anchors generation step to provide bet-
ter comparisons). All the codes in the experiments are im-
plemented in MATLAB R2018b, and run on a Windows 10
machine with 3.30 GHz i5-4590 CPU, 16 GB main memory.

4.3. Clustering results

The performance and running time of all the methods are
shown in Tab. 3, 4, 5, respectively. It can be seen that
FRWL outperforms other methods on most of the benchmark
datasets, especially in the NMI metric, which is most widely
used in the clustering community. Meanwhile, FRWL has a
comparable computational cost compared with others.

Table 4. Performance (NMI) on 6 data sets(%)
Dataset Nystrom LSC-K FSC FRWL-K FRWL-B
USPS20 65.73 67.79 63.39 63.57 72.57
Coil20 71.26 77.78 78.05 78.14 82.33
Palm 91.83 87.82 91.41 90.77 91.88

Coil100 68.51 75.38 77.29 77.46 78.11
USPS 61.51 68.87 67.87 67.56 71.64
Mnist 24.03 62.51 59.01 59.85 67.28

Table 5. Running time on 6 data sets(s)
Dataset Nystrom LSC-K FSC FRWL-K FRWL-B
USPS20 1.69 0.26 0.41 0.11 0.30
Coil20 1.53 0.26 0.99 0.11 0.31
Palm 1.18 0.63 0.83 0.40 0.56

Coil100 2.03 3.29 9.02 3.20 3.49
USPS 2.40 0.86 2.54 0.78 1.19
Mnist 6.44 11.39 67.39 14.72 13.70

25 26 27 28 29 210

m

30

40

50

60

70

N
M

I 
(%

)

FSC

LSC-K

Nystrom

FRWL-K

FRWL-B

Fig. 2. Parameter sensitivity study of FRWL

4.4. Parameter Sensitivity

In order to further test the behavior of our proposed methods,
we choose the USPS dataset and experimentally analysis the
effect of the number of anchors on these methods. Fig. 2
shows that small amounts of anchors does not decrease the
performance of FRWL a lot, in which case there are many
boundary points crossing different clusters.

5. CONCLUSIONS

In this paper, we revisit the popular affinity matrix based on
the anchor graph and point out that the spectral embedding
obtained using symmetric normalized Laplacian is only a side
view of the bipartite structure. Based on the analysis, we pro-
pose Fast Spectral Clustering based on Random Walk Lapla-
cian (FRWL) method to explicitly balance the popularity of
anchors and the independence of data points, which is espe-
cially important for clustering of boundary points. The time
complexity of our method is linear with respect to the num-
ber of data points. Comprehensive experiments on several
data sets demonstrate the efficiency and effectiveness of our
method.

Parameter sensitivity study of FRWL on USPS
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Conclusion

Fast Spectral Clustering based on the Random Walk Laplacian (FRWL) can explicitly balance
the popularity of anchors and the independence of data points, which is important for
clustering of boundary points (especially when there are many neighbor anchors).
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Thanks for your attention
Presenter: Cheng-Long Wang
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