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The retina
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• The retina is the innermost, light-sensitive layer of the eye

• Serve a function like the image sensors in a camera

Retinal diseases

• Age-related macular degeneration (AMD), diabetic retinopathy, glaucoma

• Severely damage the vision of patient

Structure of the human eye
(cross-sectional view)

Images by National Eye Institute, National Institutes of Health

Normal vision The same view with AMD The same view with glaucomaThe same view with 
diabetic retinopathy



Retinal imaging
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• The role of imaging in retinal diseases is critical

• Ophthalmologists face a large array of imaging devices

• Each device uses different methods, wavelengths, functional tests, angiographic dyes, 

optical systems, angles of view

TRC-NW7SF Mark II OptosOCT SLO SPECTRALIS SPIRIT



Multimodal retinal image registration

6

• Motivation: Integrate functional and structural evaluations into one co-localizable database

• Challenge: Different field of view, lens systems, light sources, manufactures …

• Solution: Retinal vessels are seen by all instruments, can be used to align different modalities

Color fundus (CF) Infrared reflectance (IR) fluorescein angiography (FA) Blue-reflectance (BAF)



Multimodal retinal image registration
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• Two images from different modalities

• Align (warp) source image to target image

Multimodal retinal 
image registration

Source (floating) image

Target (fixed) image

Aligned images



General registration pipeline
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The coarse-to-fine pipeline for multi-modal retinal image registration[13]

Rigid transformation

Affine transformation

Perspective transformation

Deformable registration field [13]

(a) source (b) Registration field (c) target

[13] J. Zhang et al,  “Joint vessel segmentation and deformable registration on multi-modal retinal images based on style transfer,”   in ICIP 2019



Research goal

• If the coarse alignment step is successful, the fine alignment step can improve accuracy

• However, if the coarse alignment completely fails / is too far away from ground-truth alignment, the fine 

alignment step cannot correct the previous result

• Therefore, improving the coarse alignment step is crucial to increase the success rate 

• Research Goal: Design a coarse alignment method that is robust & accurate
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Related works

• Area-based: degrades for small overlap, rely on intensity, not suitable for multimodal

• Feature-based: detect feature points and find point correspondences

• Vessel extraction: edge detection[5], mean phase image[2], vessel segmentation[6,12,13];

• DRIU vessel segmentation network[12], unsupervised vessel segmentation network[13]

• Feature detection & description: SIFT[7], Harris corner[14], HOG[15]; LIFT[17], UCN[18], SuperPoint[19]

• Outlier rejection: LMEDS[20], RANSAC[9]; learned correspondences[24]

• Learning-based: using convolutional neural networks (CNN)

• Multimodal retinal images[13], [26]: focus only on deformable, assume affinely aligned

• VoxelMorph[25], DLIR[11]: CT/MRI images, single-modal only

• CNNGeo[10]: multimodal natural image semantic alignment
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Proposed learning-based coarse alignment pipeline

Proposed method

• Three neural networks for vessel segmentation, feature detection and description, and outlier rejection

• The first deep learning framework for multimodal retinal image coarse alignment
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The vessel segmentation network

Vessel segmentation network
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[13] pretrained network is used 

[13] J. Zhang et al,  “Joint vessel segmentation and deformable registration on multi-modal retinal images based on style transfer,”   in ICIP 2019



The SuperPoint network

SuperPoint network
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[19] pretrained network is used 

15[19] D. DeTone et al,  “SuperPoint: Self-supervised  interest  point  detection  and  description,” in CVPR 2018



The outlier rejection network

Outlier rejection network

16[24] K.  M.  Yi et. al,  “Learning to find good correspondences,”  in CVPR 2018



• Classification loss:

• Matrix regression loss:

• Image registration loss:

(Binary) Dice coefficient: Soft Dice coefficient:

• Total loss:

Training outlier rejection network
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Dataset

• Dataset collected from Jacobs Retina Center at Shiley Eye Institute

• Source: CF image (RGB, 3000×2672)

• Target: IR image (grayscale, 768×768 or 1536×1536)

• Training set: 530 pairs, validation set: 90 pairs, test set: 253 pairs

• Ground truth: transformation matrices 

• Manually labeled by selecting point correspondences in each image
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Experiments
Dataset: Our test set (253 pairs of CF & IR)

Comparison: 

• Conventional method [2]: mean phase image + dense HOG + RANSAC

• CNNGeo [10]: compare only affine registration step, pretrained and finetuned version

Criteria: 

• Robustness: Success rate

• Success registration is determined by the maximum error (MAE) on corresponding landmarks

• Determine success registration by MAE < 20 pixels

• Accuracy: Dice coefficient 

• Our binary segmentation maps (threshold at 0.5)

20
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Source image Target image Source segmentation Target segmentation

Source keypoints Target keypoints Inlier matches (green) & outlier matches (red)

Example pair 1



Registration result
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Proposed (MAE=2.2)

Proposed (Dice=0.7065)

Source image

Target image

Conventional[2] (MAE=5.0)

Conventional[2] (Dice=0.6366)

CNNGeo[10] (MAE=95.9)

CNNGeo[10] (Dice=0.1295)
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Source image Target image Source segmentation Target segmentation

Source keypoints Target keypoints Inlier matches (green) & outlier matches (red)

Example pair 2



Registration result
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Proposed (MAE=7.1)

Proposed (Dice=0.5384)

Source image

Target image

Conventional[2] (MAE=429.7)

Conventional[2] (Dice=0.0517)

CNNGeo[10] (MAE=150.3)

CNNGeo[10] (Dice=0.0732)



Quantitative result
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Table 1: Result using different combinations of algorithms on the test set

Method Success Rate Dice coefficient

(a) Phase + HOG + RANSAC (Method [2]) 48.22% (122/253) 0.3084 (±0.2821)

(b) Phase + SuperPoint + RANSAC 79.84% (202/253) 0.4902 (±0.2304)

(c) Seg. + SuperPoint + RANSAC 85.37% (216/253) 0.4922 (±0.2162)

(d) Seg. + SuperPoint + OutlierNet (Proposed) 94.07% (238/253) 0.5748 (±0.1796)

*Dice coefficient before registration: 0.0399 (±0.0146) 

[2] Z.  Li et al, 2018, “Multi-modal and multi-vendor retina image registration,” Biomedical optics express
[10] I. Rocco, et. al,   “Convolutional neural network architecture for geometric matching,”  in CVPR 2017

Table 2: Result using different registration methods on the test set

Method Success Rate Dice coefficient

Method [2] 48.22% (122/253) 0.3084 (±0.2821)

CNNGeo [10] pretrained 0.79% (2/253) 0.0677 (±0.0281)

CNNGeo [10] finetuned 5.13% (13/253) 0.0734 (±0.0493)

Proposed Method 94.07% (238/253) 0.5748 (±0.1796)
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Conclusion

• Proposed a deep learning framework for multimodal retinal image registration

• Focused on the globally coarse alignment step

• Vessel segmentation network + SuperPoint network + Outlier rejection network

• Significant improvement in both robustness and accuracy compared to previous conventional / 

learning-based registration methods in clinical dataset

27
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