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/\\Retinal blood vessels
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The retina

* The retina is the innermost, light-sensitive layer of the eye

Macula
Lens

e Serve a function like the image sensors in a camera X

Retinal diseases Structure ofthe human eye
(cross-sectional view)

* Age-related macular degeneration (AMD), diabetic retinopathy, glaucoma

* Severely damage the vision of patient

Normal vision The same view with The same view with AMD The same view with glaucoma
diabetic retinopathy
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Retinal imaging

The role of imaging in retinal diseases is critical
Ophthalmologists face a large array of imaging devices

Each device uses different methods, wavelengths, functional tests, angiographic dyes,

optical systems, angles of view

OptosOCT SLO

TRC-NW7SF Mark II OptosOCT SLO SPECTRALIS SPIRIT




Multimodal retinal image registration

* Motivation: Integrate functional and structural evaluations into one co-localizable database
* Challenge: Different field of view, lens systems, light sources, manufactures ...

» Solution: Retinal vessels are seen by all instruments, can be used to align different modalities

Color fundus (CF) Infrared reflectance (IR) fluorescein angiography (FA) Blue-reflectance (BAF)



Multimodal retinal image registration

* Two images from different modalities

* Align (warp) source image to target image

Multimodal retinal
image registration

A 4

Source (floating) image

Aligned images

Target (fixed) image



General registration pipeline

Source image

Globally Locally
Coarse Fine
Alignment Alignment

-

Target image
The coarse-to-fine pipeline for multi-modal retinal image registration(3!

2xhxw)

Rigid transformation . ‘
Affine transformation . ’
. Py .'& .

Perspective transformation ’
P . ' (a) source (b) Registration field (c) target

Deformable registration field 3!

[13] J. Zhang et al, “Joint vessel segmentation and deformable registration on multi-modal retinal images based on style transfer,” in ICIP 2019 8



Research goal

* If the coarse alignment step is successful, the fine alignment step can improve accuracy

* However, if the coarse alighment completely fails / is too far away from ground-truth alignment, the fine

alignment step cannot correct the previous result
* Therefore, improving the coarse alignment step is crucial to increase the success rate

* Research Goal: Design a coarse alignhment method that is robust & accurate

Source image

Globally Locally
Coarse Fine
Alignment Alignment

Target image
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Related works

* Area-based: degrades for small overlap, rely on intensity, not suitable for multimodal

* Feature-based: detect feature points and find point correspondences

* Vessel extraction: edge detection®!, mean phase image!?, vessel segmentation!612.13l;
* DRIU vessel segmentation network[2l, unsupervised vessel segmentation network*3!

* Feature detection & description: SIFT), Harris corner!1¥, HOGI®!; LIFTI17] UCNI18], SuperPoint!1°]

 Outlier rejection: LMEDS!2%, RANSAC!; learned correspondences!?4]

* Learning-based: using convolutional neural networks (CNN)

* Multimodal retinal images(t3) [26]: focus only on deformable, assume affinely aligned
« VoxelMorph!25], DLIRIM: CT/MRI images, single-modal only

¢ CNNGeo!19: multimodal natural image semantic alighment
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Proposed method

* Three neural networks for vessel segmentation, feature detection and description, and outlier rejection

* The first deep learning framework for multimodal retinal image coarse alignment

Source segmentation

Source keypoints
& descriptors

Vessel
Source Segmentation Superpoint Registration
Image Network Network il Resuit
(Source)
. Calculate
Outlier
Two-way nearest | resserion N homography &
neighbor matching Nethork warp source
NIl ? = image
Vessel = ; =
Segmentation Superpoint Keypoint correspondences Inlier correspondences (green)
Betaork Neswork & outlier correspondences (red)
(Target) : .
Target keypoints

N Y
& descriptors

Target segentation

Proposed learning-based coarse alignment pipeline

13



Vessel segmentation network

[13] pretrained network is used

Pretrained VGG-16 (fixed)
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The vessel segmentation network

[13] J. Zhang et al, “Joint vessel segmentation and deformable registration on multi-modal retinal images based on style transfer,” in ICIP 2019 14



SuperPoint network

[19] pretrained network is used .
Interest Point Decoder

——————————————————————————————————————————————————

Descriptor Decoder

The SuperPoint network

[19] D. DeTone et al, “SuperPoint: Self-supervised interest point detection and description,” in CVPR 2018
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[24] K. M. Yiet. al, “Learning to find good correspondences,” in CVPR 2018



Training outlier rejection network

| N {1, if [|T(pi, Mgt) — pif| < 5 pixels

» Classification loss: Leclass(x, Mg:) = N Z".-‘iH(Hi(D'*IQf)-(T(Ui(x)]) yi(Mg:) = 0, otherwise
S =1

* Matrix regression 10ss:  £atmix (X, Mg¢) = [|[Mg: — M(x)||°

* Image registration loss: Ldice(X; Zsrc, Ltgt) = 1 — Dices(warp(Zsre, M(x)), Zigt)

2x 2. (1 ©1) 2 x Y ele_min(Z1, 7o)

i ' icient: Dice(Z1,Z2) = Di icient: Dices(Z1,22) =
(Binary) Dice coefficient (Z1,Z2) ST + 5 1o Soft Dice coefficient: Dices(Z1,Z2) ST 45T

* Total loss: ﬁ{}{ TLere, Lgt ; I\I) = AclassLclass (K- B’I)
+ }‘-matri}:ﬁmatrix(x- 1\:[) + )\dicc ‘C'dicr:(x: Iﬁrc-. Itgt)
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Dataset

» Dataset collected from Jacobs Retina Center at Shiley Eye Institute
* Source: CF image (RGB, 3000x2672)

* Target: IR image (grayscale, 768x768 or 1536x1536)

* Training set: 530 pairs, validation set: 90 pairs, test set: 253 pairs

e Ground truth: transformation matrices

 Manually labeled by selecting point correspondences in each image



Experiments

Dataset: Our test set (253 pairs of CF & IR)

Comparison:

« Conventional method [2I: mean phase image + dense HOG + RANSAC

* CNNGeo 191: compare only affine registration step, pretrained and finetuned version
Criteria:

* Robustness: Success rate
* Success registration is determined by the maximum error (MAE) on corresponding landmarks

e Determine success registration by MAE < 20 pixels

* Accuracy: Dice coefficient
2 x> (Th ®Is)

ST+ > T

* Our binary segmentation maps (threshold at 0.5) Dice(Z,12) =



Example pair 1

Source image

y & x N N P
Source keypoints Target keypoints & outlier matches (red)

¢ N ¢
| D 7T Fecte o



Registration result

Source image =2. Conventional?! (MAE 5. O) CNNGeo!1% (MAE=95.9)
Y ' 3 \ — . \ 3 :

Target image Proposed (Dice=0.7065) Conventionall?l (Dice=0.6366) CNNGeo!1% (Dice=0.1295)>



Example pair 2

Source keypoints & outlier matches (red)




Registration result

Proposed (MAE=7.1) Conventional? (MAE=429.7) CNNGeo!1% (MAE=150.3)

Target image



Quantitative result

Table 1: Result using different combinations of algorithms on the test set

Method Success Rate Dice coefficient

(a) Phase + HOG + RANSAC (Method [2]) 48.22% (122/253) 0.3084 (+0.2821)
(b) Phase + SuperPoint + RANSAC 79.84% (202/253) 0.4902 (+0.2304)
(c) Seg. + SuperPoint + RANSAC 85.37% (216/253) 0.4922 (+0.2162)
(d) Seg. + SuperPoint + OutlierNet (Proposed) 94.07% (238/253) 0.5748 (£0.1796)

Table 2: Result using different registration methods on the test set

Method Success Rate Dice coefficient

Method [2] 48.22% (122/253) 0.3084 (+0.2821)
CNNGeo [10] pretrained 0.79% (2/253) 0.0677 (+0.0281)
CNNGeo [10] finetuned 5.13% (13/253) 0.0734 (+0.0493)
Proposed Method 94.07% (238/253) 0.5748 (+0.1796)

*Dice coefficient before registration: 0.0399 (+0.0146)

[2] Z. Lietal, 2018, “Multi-modal and multi-vendor retina image registration,” Biomedical optics express
[10] I. Rocco, et. al, “Convolutional neural network architecture for geometric matching,” in CVPR 2017
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Conclusion

Proposed a deep learning framework for multimodal retinal image registration

Focused on the globally coarse alignment step

Vessel segmentation network + SuperPoint network + Outlier rejection network

Significant improvement in both robustness and accuracy compared to previous conventional /

learning-based registration methods in clinical dataset
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