Speaker-aware Training of Attention-based End-to-End Speech Recognition using Neural Speaker Embeddings

Aku Rouhe, Tuomas Kaseva, Mikko Kurimo Aalto University

Speaker adaptation in ASR

- Speaker adaptation = "Readjust model parameters to each speaker"
- Speaker-aware training = "Include speaker info in features; model learns to use it"

G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, "Speaker adaptation of neural network acoustic models using i-vectors," in 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Dec 2013, pp. 55–59.

Speaker-aware training in Attention-based ASR

Main conclusions:

- 1. Speaker-aware training outperforms an end-to-end SequenceSummary (speaker-aware-like) baseline
- 2. Neural speaker embeddings can be competitive in speaker-aware training

Speaker embeddings - speaker verification

In speaker verification:

- 1. Neural embeddings generally outperform i-vectors
- 2. The large VoxCeleb datasets are available

Zhong Meng, Yashesh Gaur, Jinyu Li, and Yifan Gong, "Speaker Adaptation for Attention-Based End-to-End Speech Recognition," in *Proc. Interspeech 2019*, 2019, pp. 241–245.

Marc Delcroix, Shinji Watanabe, Atsunori Ogawa, Shigeki Karita, and Tomohiro Nakatani, "Auxiliary feature based adaptation of end-to-end asr systems," in *Proc. Interspeech 2018*, 2018, pp. 2444–2448.

Kartik Audhkhasi, Bhuvana Ramabhadran, George Saon, Michael Picheny, and David Nahamoo, "Direct acoustics-toword models for english conversational speech recognition," in *Proc. Interspeech 2017*, 2017, pp. 959–963.

Natalia Tomashenko and Yannick Estève, "Evaluation of feature-space speaker adaptation for end-to-end acoustic models," in *Proceedings of the Eleventh International Conference* on Language Resources and Evaluation (LREC-2018), 2018.

Joanna Rownicka, Peter Bell, and Steve Renals, "Embeddings for dnn speaker adaptive training," in 2019 IEEE Workshop on Automatic Speech Recognition and Understanding, 2019, Accepted for publication, preprint accessed online 15.10.2019: https://arxiv.org/pdf/1909.13537.pdf.

Desh Raj, David Snyder, Daniel Povey, and Sanjeev Khudanpur, "Probing the information encoded in x-vectors," in 2019 *IEEE Workshop on Automatic Speech Recognition and Understanding*, 2019, Accepted for publication, preprint accessed online 15.10.2019: https://arxiv.org/pdf/1909.06351.pdf.

Related work recap

- Speaker-aware training of HMM-based models (including CTC), have been shown to work well,
 - No experiments with attention-based ASR
- Only few speaker adaptation methods proposed in attention-based ASR altogether
- Neural embeddings work well in speaker verification
 - No conclusive results in ASR yet

Experimental setup

- TED-LIUM and WSJ
- BLSTM encoder, hybrid attention, LSTM decoder
- ESPnet implementation
 - Including hybrid CTC/Attention model
- Two categories of speaker embeddings:
 - "Fixed"
 - "+VoxCeleb"
- ... And three types:
 - i-vector
 - x-vector
 - thin-Resnet

"Fixed" setting speaker embeddings

- Trained on ASR data
- Optimized with heuristic: Best ARI

"+VoxCeleb" setting speaker embeddings

	EER
i-vector [25]	5.3
x-vector [25]	3.1
thin-ResNet [9]	3.22

	TED-LIUM	Test		Dev		
		No LM	+LM	No LM	+LM	
Fixed	Baseline	21.7	18.6	22.6	20.0	
	SeqSum [5]	21.1	-	21.7	-	
	i-vector ₁₀₀	20.9	17.9	21.4	18.9	
	x-vector ₂₅₆	21.5	18.4	23.0	20.0	

	WSJ	Eval92		Dev93	
		No LM	+LM	No LM	+LM
Fixed	Baseline	17.5	9.3	22.1	13.2
	SeqSum [5]	16.3	8.7	21.3	13.2
	i-vector ₁₀₀	17.6	8.5	22.3	11.3
	x-vector ₂₅₆	16.2	8.6	20.3	11.6

	TED-LIUM	Test		Dev	
		No LM	+LM	No LM	+LM
	Baseline	21.7	18.6	22.6	20.0
ed	SeqSum [5]	21.1	-	21.7	-
Fix	i-vector ₁₀₀	20.9	17.9	21.4	18.9
	x-vector ₂₅₆	21.5	18.4	23.0	20.0
+VoxCeleb	i-vector _{200-LDA}	20.2	17.4	20.7	18.2
	i-vector ₄₀₀	20.4	17.2	21.0	18.3
	x-vector _{200-LDA}	20.9	17.4	21.6	18.6
	x-vector ₅₁₂	20.1	17.2	20.9	18.1
	thin-ResNet ₅₁₂	20.7	17.2	21.0	18.3

WSJ		Eval92		Dev93	
		No LM	+LM	No LM	+LM
	Baseline	17.5	9.3	22.1	13.2
Fixed	SeqSum [5]	16.3	8.7	21.3	13.2
	i-vector ₁₀₀	17.6	8.5	22.3	11.3
	x-vector ₂₅₆	16.2	8.6	20.3	11.6
+VoxCeleb	i-vector _{200-LDA}	17.2	9.1	21.2	11.9
	i-vector ₄₀₀	15.3	8.0	20.5	11.7
	x-vector _{200-LDA}	18.8	9.5	25.0	13.5
	x-vector ₅₁₂	16.2	8.7	20.5	11.2
	thin-ResNet ₅₁₂	16.7	8.7	20.4	11.6

No CTC-hybrid WSJ

	WSJ	Eval92		Dev93	
		No LM	+LM	No LM	+LM
	Baseline	14.9	10.7	18.7	13.7
+VoxCeleb	i-vector _{200-LDA}	16.0	12.9	19.8	15.4
	i-vector ₄₀₀	13.2	10.9	17.5	14.5
	x-vector _{200-LDA}	16.0	12.4	20.1	15.5
	x-vector ₅₁₂	13.5	10.4	16.9	15.0
	thin-ResNet ₅₁₂	12.9	10.6	17.2	14.1

Embedding post-processing - practical advice

- L2 normalization seems to be crucial
- Dimensionality reduction not useful with neural methods, but may help with i-vectors

Embedding post-processing - practical advice

TED-LIUM	Test		Dev	
	No LM	+LM	No LM	+LM
x-vector	20.1	17.2	20.9	18.1
x-vector subtract mean	20.5	17.2	21.0	18.2
i-vector	20.7	17.8	21.5	18.7
i-vector subtract mean	20.4	17.2	21.0	18.3

Conclusions

- Use speaker-aware training as a baseline when developing end-to-end speaker adaptation methods.
- Neural speaker embeddings *promising* in speaker-aware training.

