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Graph Signal Processing and Spectral Clustering

Preliminaries
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Graph Laplacians2 : L, or L
Other selections3
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Graph Signal Processing and Spectral Clustering

Spectral Clustering

Here: Directed Case

ùñ

Graph Laplacian: L “ D´A

0 “ λ1 ă λ2 ď ¨ ¨ ¨ ď λN
(Fiedler Value)

L v2 “ λ2 v2

(Fiedler Vector)

Compute v2 with random asynchronous computations?
1 Fiedler, "Algebraic connectivity of graphs," Czechoslovak mathematical journal, 1973
2 Ng, Jordan, and Weiss, "On spectral clustering: Analysis and an algorithm," NIPS, vol. 67, no. 11, 2002
3 Teke & Vaidyanathan, "Random Node-Asynchronous Updates on Graphs," IEEE Trans. S.P., vol. 67, no. 11, 2019
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Asynchronous Updates on Graphs

Asynchronous Fixed-Point Iterations
A = Graph Operator

xk “ A xk-1 ` u

xk = Signal on the Graph

u = Input Signal (u“0 in clustering)

xkris “ ai xk-1 ` ui @ i

“
ÿ

jPN piq
ai,j xk-1rjs ` ui @ i

xkris “

#

ai xk-1 ` ui, w.p. pi,

xk-1ris, w.p. 1-pi.

lim
kÑ8

xk “ ?

Recurrent NN
(Hopfield Model)

xkris “ θ pai xk-1 ` uiq

Synchronous case:

Random Asynchronous case:

ρpAq ă 1 ùñ lim
kÑ8

xk “ pI´Aq-1 u

To be discussed next ...
1 Hopfield, "Neural networks and physical systems with emergent collective computational abilities," PNAS, 1982
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Asynchronous Updates on Graphs

Mean-Squared Convergence of the Updates

xkris “

#

ai xk-1 ` ui, w.p. pi,

xk-1ris, w.p. 1-pi.
lim
kÑ8

xk “?

Where does it converge?

x“Ax`u ñ uP rangepI´Aq

Solution set
(affine space)

𝑥𝑥𝑘𝑘
𝑟𝑟𝑘𝑘

𝑥𝑥⋆

Solution space of
λ = 1

Least-norm
solution

rk “ Q pxk ´ x‹q

Q : Projection on nullKpI´Aq

When does it converge?

When A is normal [1]

ó

lim
kÑ8

E
“

}rk}
2
2

‰

“ 0

1 Teke & Vaidyanathan, "Random Node-Asynchronous Updates on Graphs," IEEE Trans. S.P., vol. 67, no. 11, 2019
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Asynchronous Updates on Graphs

Mean-Squared Convergence of the Updates - Cont.
Theorem (The necessary and sufficient condition)

lim
kÑ8

E
“

}rk}
2
2

‰

“ 0 ðñ ρpΘ Sq ă 1

where

S “ Ā
˚
b Ā`

´

pI´Pq bP
¯

J
´

pA˚ ´ Iq b pA´ Iq
¯

,

Ā “ I`P pA´ Iq, Θ “ Q˚ bQ

3 Valid for any A (applicable to directed graphs)

3 Ensures mean-squared convergence

3 Robust to input noise [1, 2]

3 Can compute eigenvectors (to de discussed next)

1 Teke & Vaidyanathan, "Node-Asynchronous Spectral Clustering on Directed Graphs," ICASSP , 2020
2 Teke & Vaidyanathan http://systems.caltech.edu/dsp/students/oteke/files/icassp2020.pdf
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˚
b Ā`
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Asynchronous Updates on Graphs

Computing Eigenvectors

u “ 0 ùñ xkris “

#

ai xk-1, w.p. pi,

xk-1ris, w.p. 1-pi.

Solution set
(eigenspace of λ = 1)

𝑥𝑥𝑘𝑘
𝑟𝑟𝑘𝑘

𝑥𝑥⋆

Solution space of
λ = 1

Least-norm
solution

rk “ Q xk

Q : Projection on nullKpI´Aq

lim
kÑ8

E
“

}rk}
2
2

‰

“ 0

õ

xk converges to
an eigenvector of λ “ 1

10 / 16



Asynchronous Updates on Graphs

Computing Eigenvectors

u “ 0 ùñ xkris “

#

ai xk-1, w.p. pi,

xk-1ris, w.p. 1-pi.

Solution set
(eigenspace of λ = 1)

𝑥𝑥𝑘𝑘
𝑟𝑟𝑘𝑘

𝑥𝑥⋆

Solution space of
λ = 1

Least-norm
solution

rk “ Q xk

Q : Projection on nullKpI´Aq

lim
kÑ8

E
“

}rk}
2
2

‰

“ 0

õ

xk converges to
an eigenvector of λ “ 1

10 / 16



Asynchronous Updates on Graphs

Computing Eigenvectors

u “ 0 ùñ xkris “

#

ai xk-1, w.p. pi,

xk-1ris, w.p. 1-pi.

Solution set
(eigenspace of λ = 1)

𝑥𝑥𝑘𝑘
𝑟𝑟𝑘𝑘

𝑥𝑥⋆

Solution space of
λ = 1

Least-norm
solution

rk “ Q xk

Q : Projection on nullKpI´Aq

lim
kÑ8

E
“

}rk}
2
2

‰

“ 0

õ

xk converges to
an eigenvector of λ “ 1

10 / 16



Asynchronous Updates on Graphs

Computing Eigenvectors

u “ 0 ùñ xkris “

#

ai xk-1, w.p. pi,

xk-1ris, w.p. 1-pi.

Solution set
(eigenspace of λ = 1)

𝑥𝑥𝑘𝑘
𝑟𝑟𝑘𝑘

𝑥𝑥⋆

Solution space of
λ = 1

Least-norm
solution

rk “ Q xk

Q : Projection on nullKpI´Aq

lim
kÑ8

E
“

}rk}
2
2

‰

“ 0

õ

xk converges to
an eigenvector of λ “ 1

10 / 16



Autonomous Spectral Clustering

Outline
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Autonomous Spectral Clustering

Use of Graph Polynomials

λ “ 1

A
Asynchronous

lim
kÑ8

xk P nullpA´ Iq

Hpλ2q “ 1
HpAq “

L
ÿ

k“0

hk Ak

Asynchronous

lim
kÑ8

xk P nullpA´ λ2 Iq

(Fiedler Vectorq

HpAq „ A Lth order ñ L-hop neighborhood

Φ “

»

—

—

—

–

1 λ1 ¨ ¨ ¨ λL1
1 λ2 ¨ ¨ ¨ λL2
...

...
...

1 λN ¨ ¨ ¨ λLN

fi

ffi

ffi

ffi

fl

h “ rh0 h1 ¨ ¨ ¨ hLs
T

Linear Programming:

max
h

c ě 0

c s.t.
φ2 h “ 1

|Φ̄ h| ď p1´ cq 1N -1

L “ 2 works in practice
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Autonomous Spectral Clustering

A Numerical Application

pLq

0 “ λ1 ă |λ2| ď ¨ ¨ ¨ ď |λN |
(Fiedler Value)

L v2 “ λ2 v2

(Fiedler Vector)

x “ signpv2q

10
0

10
1

10
2

10
3

10
4

10
5

Iteration Index (k)

10
-6

10
-4

10
-2

10
0

10
2

M
S
E

(

E
[

‖
r
k
‖
2 2

]
)

p = 1.0
p = 0.9
p = 0.5
p = 0.1

p : Update probabilities

p “ 1 is the synchronous case

Input noise

1 Fiedler, "Algebraic connectivity of graphs," Czechoslovak mathematical journal, 1973
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