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. Adjacency matrix' : A
A is the graph operator Graph Laplacians® : L, or £
Other selections®

1 Sandryhaila & Moura, "Discrete Signal Processing on Graphs," IEEE Trans. S. P. vol. 61, no. 7, 2013
2 Shuman et al, "The emerging field of signal processing on graphs: ...," IEEE S. P. Magazine, vol. 30, no. 3 2013 4/16



Spectral Clustering

5/16



Spectral Clustering

5/16



Graph Signal Processing and Spectral Clustering

Spectral Clustering

Graph Laplacian: L=D-A

5/16



Graph Signal Processing and Spectral Clustering

Spectral Clustering

Graph Laplacian: L=D-A

0= <o << Ay Lvy=MXvy
(Fiedler Value) (Fiedler Vector)

' Fiedler, "Algebraic connectivity of graphs," Czechoslovak mathematical journal, 1973
2 Ng, Jordan, and Weiss, "On spectral clustering: Analysis and an algorithm,” NIPS, vol. 67, no. 11, 2002
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Spectral Clustering

Graph Laplacian: L=D-A

0= <o << Ay Lvy=MXvy
(Fiedler Value) (Fiedler Vector)

Compute v with random asynchronous computations?

' Fiedler, "Algebraic connectivity of graphs," Czechoslovak mathematical journal, 1973
2 Ng, Jordan, and Weiss, "On spectral clustering: Analysis and an algorithm,” NIPS, vol. 67, no. 11, 2002
3 Teke & Vaidyanathan, "Random Node-Asynchronous Updates on Graphs," IEEE Trans. S.P, vol. 67, no. 11, 2019 5/16



Graph Signal Processing and Spectral Clustering

Spectral Clustering Here: Directed Case

Graph Laplacian: L=D-A

0= <o << Ay Lvy=MXvy
(Fiedler Value) (Fiedler Vector)

Compute v with random asynchronous computations?

' Fiedler, "Algebraic connectivity of graphs," Czechoslovak mathematical journal, 1973
2 Ng, Jordan, and Weiss, "On spectral clustering: Analysis and an algorithm,” NIPS, vol. 67, no. 11, 2002
3 Teke & Vaidyanathan, "Random Node-Asynchronous Updates on Graphs," IEEE Trans. S.P, vol. 67, no. 11, 2019 5/16
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Asynchronous Fixed-Point Iterations

A = Graph Operator
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1 Hopfield, "Neural networks and physical systems with emergent collective computational abilities," PNAS, 1982 7/16
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—00

where
s=A"®A+(1-P)oP)J((A"-De(A-T),
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v/ Valid for any A (applicable to directed graphs)
v/ Ensures mean-squared convergence
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T Teke & Vaidyanathan, "Node-Asynchronous Spectral Clustering on Directed Graphs," ICASSP , 2020
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Randomization opens up a
new dimension!

How can we exploit it for
better?
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