

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

Mircea Moscu, Ricardo Borsoi, Cédric Richard

ICASSP 2020

May 2020

M. Moscu, R. Borsoi, C. Richard

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

< ロ > < 同 > < 回 > < 回 > .

Structure		OBSERVATOIRE DELA COTE D'AZUR UNIVERSITÉ CÔTE D'AZUR

Problem definition and optimization

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

M. Moscu, R. Borsoi, C. Richard

Introduction		
Motivation		B OBSERVATOIRE UNIVERSITE COTE D'AZUR

- data are abundant and diverse, and are often supported at irregular domains that can be naturally modeled as graphs
- most graph signal processing algorithms assume prior knowledge of the graph structure
- examples where topology needs to be inferred from data include brain networks, gene regulation systems [1] or social and economical interactions [2]

Figure 1: Potential brain network. (Sapien Labs)

Introduction		
000		

Definitions and notations

Definitions

- graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- \mathcal{N} set of N+1 nodes
- \mathcal{E} set of edges; if m and n are linked, $(m, n) \in \mathcal{E}$
- adjacency matrix A [3, 4]
 - $(N+1) \times (N+1)$ matrix
 - a_{nm} is 0 if $(m, n) \notin \mathcal{E}$, 1 otherwise
 - encodes the underlying graph connectivity
- signal $\boldsymbol{y}(i) \triangleq [y_1(i), \dots, y_{N+1}(i)]^\top$, $i \in \mathbb{N}_+$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필 - 釣�?

M. Moscu, R. Borsoi, C. Richard

Introduction		
Background		OBSERVATOIRE DE LA COTE D'ATUR UNIVERSITÉ CÔTE D'AZUR

Goal

Estimating the graph topology encoded in a (possibly directed) adjacency matrix \boldsymbol{A} from online nodal measurements $\boldsymbol{y}(i) = [y_1(i), \ldots, y_{N+1}(i)]^\top$, $i \in \mathbb{N}_+$ acquired over \mathcal{G}

- The dynamic graph signal y(i) can denote, e.g., the electrical activity of different brain-regions [5, 6], or the voltage angle per bus [7]
- The signal at each node $y_n(i)$ influences and is influenced by the signals at the other nodes $(y_m(i), m \in N \setminus \{n\})$

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ●

However, nonlinear interactions are being reported in many applications (e.g., in brain connectivity [8, 9]) and call for more general models.

Recent methods have considered models of the form [10]:

$$y_n(i) = \sum_{m \in \mathcal{N} \setminus \{n\}} a_{nm} f_m(y_m(i)) + v_n(i) , \qquad (1)$$

where

- v_n(i) represents innovation noise
- a_{nm} is the $(n,m)^{\text{th}}$ entry of the graph adjacency matrix \boldsymbol{A}
- f_m is a nonlinear function

For ease of exposition, we consider f_m can be a memory-less function, without loss of generality.

Using model (1), the topology estimation problem can formulated using all available measurements ($y_n(\ell)$ for $\ell \leq i$) as:

$$\underset{\boldsymbol{a}_{n},f_{1},\ldots,f_{N}}{\operatorname{argmin}} \ \frac{1}{2i} \sum_{\ell=1}^{i} \left\| y_{n}(\ell) - \sum_{m \in \mathcal{N} \setminus \{n\}} a_{nm} f_{m}(y_{m}(\ell)) \right\|^{2} + \vartheta(\boldsymbol{a}_{n})$$
subject to $a_{nm} \in \{0,1\}$, (2)

where a_n is the n^{th} row of A, and function ϑ is a sparsity promoting regularization (e.g., L_0 or L_1 (semi)-norm).

However, problem (2) is difficult to solve: it is non-convex, and has infinite dimensional decision variables f_m .

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

크

To obtain an efficient algorithm without sacrificing representation power, we:

- denote $\phi_{nm} = a_{nm} f_m$, which allows us to incorporate the binary variable a_{nm} and turn (2) into a problem that is quadratic in ϕ_{nm} .
- constrain φ_{nm}, for m ∈ N \ {n}, to a Reproducing Kernel Hilbert Space (RKHS) H_κ associated with a positive definite reproducing kernel κ(·, ·).
- Thus, $a_{nm} = 0$ becomes equivalent to $\|\phi_{nm}\|_{\mathcal{H}_{\kappa}} = 0$.

The optimization problem becomes:

$$\underset{\substack{\phi_{nm}\in\mathcal{H}_{\kappa}\\m=1,\ldots,N}}{\operatorname{argmin}} \frac{1}{2i} \sum_{\ell=1}^{i} \left\| y_{n}(\ell) - \sum_{m\in\mathcal{N}\setminus\{n\}} \phi_{nm}(y_{m}(\ell)) \right\|^{2} + \sum_{m\in\mathcal{N}\setminus\{n\}} \psi_{\mathcal{H}_{\kappa}}(\|\phi_{nm}\|_{\mathcal{H}_{\kappa}}),$$
(3)

where $\psi_{\mathcal{H}_{\kappa}} : \mathbb{R} \to [0, \infty[$ is a non-decreasing function.

The representer theorem [11] implies that the solution to (3) admits a finite-dimensional representation:

$$\phi_{nm}^{*}(\cdot) = \sum_{p=1}^{i} \alpha_{nmp} \kappa_{m}(\cdot, y_{m}(p)), \quad m = 1, \dots, N, \quad \alpha_{nmp} \in \mathbb{R}$$
 (4)

However, the number of coefficients $\{\alpha_{nmp}\}$ increases with *i*, which is a problem for online processing.

A solution to this problem is to consider sparse kernel dictionaries \mathcal{D}_m :

Kernel dictionary and sparsification rule

- each node *m* in the network creates, updates, and stores a dictionary of kernel functions, $\mathcal{D}_m = \{\kappa_m(\cdot, y_m(\omega_j)) : \omega_j \in \mathcal{I}_m^i \subset \{1, \dots, i-1\}\}$
- a candidate kernel function κ(·, y_m(i)) is added in D_m if the following sparsification condition holds [12]:

$$\max_{\nu_j \in \mathcal{I}_m^i} |\kappa(y_m(i), y_m(\omega_j))| \le \xi_m,$$
(5)

イロト イヨト イヨト イヨト

where $\xi_m \in [0, 1]$ determines the level of sparsity and coherence [12]

• the size of the dictionary remains bounded as $i \to \infty$

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

variables $\{\alpha_{nm\omega_j}\}_{\omega_j\in\mathcal{I}_m^i}$, $m\in\mathcal{N}\setminus\{n\}$, can be promoted by using a block-sparse regularization [13]:

$$\boldsymbol{\alpha}_{n}^{*} = \operatorname*{argmin}_{\boldsymbol{\alpha}_{n}} \frac{1}{2} \left\| y_{n}(i) - \boldsymbol{\alpha}_{n}^{\top} \tilde{\boldsymbol{k}}(i) \right\|^{2} + \eta_{n} \sum_{m \in \mathcal{N} \setminus \{n\}} \| \tilde{\boldsymbol{\alpha}}_{nm} \|_{2}, \tag{6}$$

where we considered the online version of the batch cost function (6) with the instantaneous MSE estimate (measured only at instant *i*), and block vectors α_n and $\tilde{k}(i)$ are defined as:

$$\tilde{\boldsymbol{k}}(i) = \begin{bmatrix} \boldsymbol{k}_{1}^{\top}(i), \dots, \boldsymbol{k}_{N}^{\top}(i) \end{bmatrix}^{\top}, \quad \boldsymbol{k}_{m}(i) = \operatorname{col}\{k_{m}(y_{m}(i), y_{m}(\omega_{j}))\}_{\omega_{j} \in \mathcal{I}_{m}^{i}}, \\ \boldsymbol{\alpha}_{n} = \begin{bmatrix} \tilde{\boldsymbol{\alpha}}_{n1}^{\top}, \dots, \tilde{\boldsymbol{\alpha}}_{nN}^{\top} \end{bmatrix}^{\top}, \quad \tilde{\boldsymbol{\alpha}}_{nm} = \operatorname{col}\{\alpha_{nm\omega_{j}}\}_{\omega_{j} \in \mathcal{I}_{m}^{i}}.$$
(7)

M. Moscu, R. Borsoi, C. Richard

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

(日) (同) (目) (日) (日)

Using the subgradient descent algorithm [14] leads to the update:

Update rule

$$\hat{\boldsymbol{\alpha}}_n(i+1) = \hat{\boldsymbol{\alpha}}_n(i) + \mu_n \tilde{\boldsymbol{k}}(i) [y_n(i) - \tilde{\boldsymbol{k}}^\top(i) \hat{\boldsymbol{\alpha}}_n(i)] - \mu_n \eta_n \boldsymbol{\Gamma}_n(i) .$$
(8)

with $\Gamma_n(i) = [\Gamma_{n1}^{\top}(i), \dots, \Gamma_{nN}^{\top}(i)]^{\top}$ [14], where each block $\Gamma_{nm}(i)$ is:

$$\boldsymbol{\Gamma}_{nm}(i) = \begin{cases} \frac{\tilde{\boldsymbol{\alpha}}_{nm}(i)}{\|\tilde{\boldsymbol{\alpha}}_{mn}(i)\|_2} & \text{if } \|\tilde{\boldsymbol{\alpha}}_{mn}(i)\|_2 \neq 0\\ \mathbf{0} & \text{if } \|\tilde{\boldsymbol{\alpha}}_{mn}(i)\|_2 = 0 \end{cases}$$
(9)

Edge identification

Set $\hat{a}_{nm}(i)$ to 1 if $\|\hat{\alpha}_{nm}(i)\| \ge \tau_n$, to 0 otherwise

M. Moscu, R. Borsoi, C. Richard

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

The used data come from a 39-year-old female subject suffering from intractable epilepsy [15]. The data-set contains 8 instances of electrocorticography (ECoG) time series, each instance representing one seizure and contains voltage measurements from 76 different regions on and inside the brain, during:

- the 10 seconds before the epilepsy seizure (preictal interval)
- the first 10 seconds during the seizure (ictal interval)

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

æ

Figure 2: Estimated adjacency matrices (left) and summed in- and out-degrees for the estimated graphs (right). The larger the radius corresponding to node n, the larger the summed degree of node n.

We used electroencephalography (EEG) measurements [16] taken from a group of six subjects, half of which are healthy and half suffer from schizophrenia. A simple button-pressing task is set up, in three separate settings where subjects either:

- Task 1: pressed the button and a tone was immediately played
- Task 2: listened to the tone without the button press
- Task 3: pressed the button and the tone was not played

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

æ

	Experiments		
Cabinandar		UNIVERSITÉ 🎎	

CÔTE D'AZUR

イロン イヨン イヨン イヨン

Schizophrenia dataset results

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

ъ

		Concluding remarks	
Conclusio	on and perspectives	UNIVERSITÉ	DE LA COTE D'AZUR

Conclusion

- online adaptive graph topology algorithm
- the use of kernels allows for inferring nonlinear relationships
- kernel dictionaries mitigate the increasing number of data points inherently present in an online setting
- consistent results on real data

Perspectives

- the use of multi-kernels
- the use of other sparsity-inducing techniques

3

ヘロト ヘアト ヘビト ヘビト

				References
Refere	ences I			OBSERVATOIRE DE LA COTE D'AZUR UNIVERSITE COTE DAZUR
[1]	The International HapMap Consortium. A second generation human haplotype map of over 3.1 <i>Nature</i> , 449:851 EP -, 10 2007.	million SNPs.		
[2]	U.S. Bureau of Economic Analysis. The use of commodities by industries. https://apps.bea.gov/ITable/iTable.cfm?re Accessed: 07/05/2019.	qid=52&step=3&isuri=1.		
[3]	D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and The emerging field of signal processing on graphs: Extend domains. <i>IEEE Signal Processing Magazine</i> , 30(3):83–98, 2013.	I P. Vandergheynst. ending high-dimensional data a	analysis to networks and other irregular	
[4]	N. Biggs. <i>Algebraic Graph Theory.</i> Cambridge University Press, 1993.			
[5]	Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: uses <i>Neuroimage</i> , 52(3):1059–1069, 2010.	and interpretations.		
[6]	Yanning Shen, Brian Baingana, and Georgios B Gianna Nonlinear structural vector autoregressive models for int arXiv preprint arXiv:1610.06551, 2016.	kis. ferring effective brain network (connectivity.	
[7]	L. Zhang, G. Wang, and G. B. Giannakis. Going beyond linear dependencies to unveil connectivity In <i>Proc. IEEE International Workshop on Computational</i> Curaçao, Dutch Antilles, 2017.	y of meshed grids. I Advances in Multi-Sensor Ad	aptive Processing (CAMSAP), pages 1	-5,
[8]	W. J. Freeman. EEG analysis gives model of neuronal template-matchin <i>Biological cybernetics</i> , 35(4):221–234, 1979.	ng mechanism for sensory sea	rch with olfactory bulb.	
			 (日) (四) (문) (문) 	E • ● Q ()

M. Moscu, R. Borsoi, C. Richard

Introduction	Problem definition and optimization	Experiments 0000	Concluding remarks O	References •
Refere	ences II			UNVERSITE COTE DAZUR
[9]	J. A. de Zwart, P. van Gelderen, J. M. Jansma, M. Fukun Hemodynamic nonlinearities affect BOLD fMRI response Neuroimage, 47(4):1649–1658, 2009.	aga, M. Bianciardi, and J. H. timing and amplitude.	Duyn.	
[10]	Yanning Shen, Brian Baingana, and Georgios B Giannak Kernel-based structural equation models for topology ide IEEE Transactions on Signal Processing, 65(10):2503–2:	is. Intification of directed networ 516, 2017.	ks.	
[11]	B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In International conference on computational learning the	eory, pages 416–426. Spring	er, 2001.	
[12]	C. Richard, JC. M. Bermudez, and P. Honeine. Online prediction of time series data with kernels. IEEE Transactions on Signal Processing, 57(3):1058–10	67, 2009.		
[13]	M. Yuan and Y. Lin. Model selection and estimation in regression with groupe Journal of the Royal Statistical Society: Series B (Statisti	ed variables. ical Methodology), 68(1):49–	67, 2006.	
[14]	D. Jin, J. Chen, C. Richard, and J. Chen. Adaptive parameters adjustement for group reweighted z In Acoustics, Speech and Signal Processing (ICASSP), I	ero-attracting LMS. Proc. 2018 IEEE Internationa	al Conference on.	
[15]	M. Kramer, E. D. Kolaczyk, and H. Kirsch.			

- Emergent network topology at seizure onset in humans. Epilepsy research, 79:173–86, 2008.
- [16] J. M. Ford, V. A. Palzes, B. J. Roach, and D. H. Mathalon. Did I do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone. *Schizophrenia bulletin*, 40(4):804–812, 2013.

M. Moscu, R. Borsoi, C. Richard

Online Graph Topology Inference with Kernels for Brain Connectivity Estimation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● の Q ()