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Motivation

data are abundant and diverse, and are
often supported at irregular domains that
can be naturally modeled as graphs

most graph signal processing algorithms
assume prior knowledge of the graph
structure

examples where topology needs to be
inferred from data include brain networks,
gene regulation systems [1] or social and
economical interactions [2]

Figure 1: Potential brain network.
(Sapien Labs)
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Definitions and notations

Definitions
graph G = (N , E)
N set of N + 1 nodes

E set of edges; if m and n are linked, (m,n) ∈ E
adjacency matrix A [3, 4]

(N + 1)× (N + 1) matrix
anm is 0 if (m,n) /∈ E , 1 otherwise
encodes the underlying graph connectivity

signal y(i) , [y1(i), . . . , yN+1(i)]
>, i ∈ N+
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Background

Goal
Estimating the graph topology encoded in a (possibly directed) adjacency
matrix A from online nodal measurements y(i) = [y1(i), . . . , yN+1(i)]

>,
i ∈ N+ acquired over G

The dynamic graph signal y(i) can denote, e.g., the electrical activity of
different brain-regions [5, 6], or the voltage angle per bus [7]

The signal at each node yn(i) influences and is influenced by the signals
at the other nodes (ym(i), m ∈ N \ {n})
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Additive signal model

Most previous work assume linear dependencies between the agents.
However, nonlinear interactions are being reported in many applications (e.g.,
in brain connectivity [8, 9]) and call for more general models.

Recent methods have considered models of the form [10]:

yn(i) =
∑

m∈N\{n}

anmfm(ym(i)) + vn(i) , (1)

where
vn(i) represents innovation noise

anm is the (n,m)th entry of the graph adjacency matrix A

fm is a nonlinear function

For ease of exposition, we consider fm can be a memory-less function,
without loss of generality.
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Optimization problem

Using model (1), the topology estimation problem can formulated using all
available measurements (yn(`) for ` ≤ i) as:

argmin
an,f1,...,fN

1

2i

i∑
`=1

∥∥∥yn(`)− ∑
m∈N\{n}

anmfm(ym(`))
∥∥∥2 + ϑ(an)

subject to anm ∈ {0, 1} , (2)

where an is the nth row of A, and function ϑ is a sparsity promoting
regularization (e.g., L0 or L1 (semi)-norm).

However, problem (2) is difficult to solve: it is non-convex, and has infinite
dimensional decision variables fm.
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Optimization problem

To obtain an efficient algorithm without sacrificing representation power, we:

denote φnm = anmfm, which allows us to incorporate the binary variable
anm and turn (2) into a problem that is quadratic in φnm.

constrain φnm, for m ∈ N \ {n}, to a Reproducing Kernel Hilbert Space
(RKHS) Hκ associated with a positive definite reproducing kernel κ(·, ·).
Thus, anm = 0 becomes equivalent to ‖φnm‖Hκ = 0.

The optimization problem becomes:

argmin
φnm∈Hκ
m=1,...,N

1

2i

i∑
`=1

∥∥∥yn(`)− ∑
m∈N\{n}

φnm(ym(`))
∥∥∥2 + ∑

m∈N\{n}

ψHκ(‖φnm‖Hκ),

(3)

where ψHκ : R→ [0,∞[ is a non-decreasing function.
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Finite dimensional representation

The representer theorem [11] implies that the solution to (3) admits a
finite-dimensional representation:

φ∗nm(·) =
i∑

p=1

αnmpκm(·, ym(p)), m = 1, . . . , N, αnmp ∈ R (4)

However, the number of coefficients {αnmp} increases with i, which is a
problem for online processing.
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Sparse kernel dictionaries

A solution to this problem is to consider sparse kernel dictionaries Dm:

Kernel dictionary and sparsification rule
each node m in the network creates, updates, and stores a dictionary of
kernel functions, Dm = {κm(·, ym(ωj)) : ωj ∈ Iim ⊂ {1, . . . , i− 1}}
a candidate kernel function κ(·, ym(i)) is added in Dm if the following
sparsification condition holds [12]:

max
ωj∈Iim

|κ(ym(i), ym(ωj))| ≤ ξm, (5)

where ξm ∈ [0, 1[ determines the level of sparsity and coherence [12]

the size of the dictionary remains bounded as i→∞
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Introducing sparsity

Since φnm encode the interaction from node m to node n in model (1),
promoting sparsity over A⇔ promoting sparsity over the functions φnm.

The coefficient-based representation (4) means that sparsity of groups of
variables {αnmωj}ωj∈Iim , m ∈ N \ {n} , can be promoted by using a
block-sparse regularization [13]:

α∗n = argmin
αn

1

2

∥∥∥yn(i)−α>n k̃(i)∥∥∥2 + ηn
∑

m∈N\{n}

‖α̃nm‖2, (6)

where we considered the online version of the batch cost function (6) with the
instantaneous MSE estimate (measured only at instant i), and block vectors
αn and k̃(i) are defined as:

k̃(i) =
[
k>1 (i), . . . ,k>N (i)

]>
, km(i) = col{km(ym(i), ym(ωj))}ωj∈Iim ,

αn =
[
α̃>n1, . . . , α̃

>
nN

]>
, α̃nm = col{αnmωj }ωj∈Iim .

(7)
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Algorithm update

Using the subgradient descent algorithm [14] leads to the update:

Update rule

α̂n(i+ 1) = α̂n(i) + µnk̃(i)[yn(i)− k̃
>
(i)α̂n(i)]− µnηnΓn(i) . (8)

with Γn(i) = [Γ>n1(i), . . . ,Γ
>
nN (i)]> [14], where each block Γnm(i) is:

Γnm(i) =


α̃nm(i)

‖α̃mn(i)‖2
if ‖α̃mn(i)‖2 6= 0

0 if ‖α̃mn(i)‖2 = 0
. (9)

Edge identification

Set ânm(i) to 1 if ‖α̂nm(i)‖ ≥ τn, to 0 otherwise
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Epilepsy dataset setting

The used data come from a 39-year-old female subject suffering from
intractable epilepsy [15]. The data-set contains 8 instances of
electrocorticography (ECoG) time series, each instance representing one
seizure and contains voltage measurements from 76 different regions on and
inside the brain, during:

the 10 seconds before the epilepsy seizure (preictal interval)

the first 10 seconds during the seizure (ictal interval)
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Epilepsy dataset results
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Figure 2: Estimated adjacency matrices (left) and summed in- and out-degrees for the
estimated graphs (right). The larger the radius corresponding to node n, the larger the
summed degree of node n.
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Schizophrenia dataset setting

We used electroencephalography (EEG) measurements [16] taken from a
group of six subjects, half of which are healthy and half suffer from
schizophrenia. A simple button-pressing task is set up, in three separate
settings where subjects either:

1 Task 1: pressed the button and a tone was immediately played
2 Task 2: listened to the tone without the button press
3 Task 3: pressed the button and the tone was not played
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Schizophrenia dataset results
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(a) Task 1 (b) Task 2 (c) Task 3

Figure 3: Estimated topologies per task, averaged per group.
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Conclusion and perspectives

Conclusion
online adaptive graph topology algorithm

the use of kernels allows for inferring nonlinear relationships

kernel dictionaries mitigate the increasing number of data points
inherently present in an online setting

consistent results on real data

Perspectives
the use of multi-kernels

the use of other sparsity-inducing techniques
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