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Motivation: ASD

Autism Spectrum Disorder 

● Heterogeneous group of complex neurodevelopmental disorders

● Rising reported prevalence among children in US

● Difficulties in communication and social interaction (Kenner 1943)

Reported prevalence of ASD among children (Baio et. al. 2018, CDC)
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Child/Adult Classification from 
Speech

● Primary tool: Semi-naturalistic conversations between child and clinician

● Automated analysis of diagnosis sessions can assist clinicians (Bone et al. 2016, 

Thabtah 2017, 2019)
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Challenges 

Factors that confound a conventional child/adult classification system:

● Large within-class variability especially for child from age, gender, clinical 
symptom severity (Lee et. al., 1999, Gerosa et. al., 2009)

● Lack  of  sufficient  amounts  of  balanced  training  data  needed  to  tackle  the  
above issue

Meta Learning: (Learning to learn) Paradigm of supervised learning developed for 
low-resource applications in computer vision (Finn et. al., 2017, Ravi et. al., 2016)
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Meta Learning

Training Task 1

Training Task 2

Train Split (Supports) Test Split 
(Queries)

Illustration modified from (Ravi et. al., 2016)
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Meta Learning

Training Task 1

Target Task

Training Task 2

Train Split (Supports) Test Split 
(Queries)

Illustration modified from (Ravi et. al., 2016)
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Prototypical Networks: Illustration

Goal: Learn an embedding space to minimize distance-based task loss

Prototypical Networks: Represent each class using centroid (Snell et. al., 2016)
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Goal: Learn an embedding space to minimize distance-based task loss

Prototypical Networks: Represent each class using centroid (Snell et. al., 2016)

Training Steps:
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1. Compute prototypes

Prototypical Networks: Illustration



Goal: Learn an embedding space to minimize distance-based task loss

Prototypical Networks: Represent each class using centroid (Snell et. al., 2016)

Training Steps:

Test sample
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1. Compute prototypes

2. Estimate class posteriors 

3. Compute loss

Prototypical Networks: Illustration



Meta-Learning for Child/Adult 
Classification

Session 1

Session 2

Session 3

Conventional Learning Meta Learning

Training Corpus
(Session ≡ Task)
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Datasets

● Two categories of child-adult interactions used: ADOS & BOSCC

○ Autism Diagnostic Observation Schedule (Lord et. al. 2000): Gold-standard 

tool for autism diagnosis and assessment 

○ Brief Observation of Social Communication Change (Grzadzinski et. al. 

2016): Treatment outcome measure to assess social-communication (SC) 

and restricted & repetitive behaviors (RRB) 

● Corpora division:

○ ASD-Verbal: Fully-verbal children (Train & Test)

○ ASD-Infants: Minimally-verbal toddlers & infants (Test only)

Table: Data statistics for ASD and ASD-Infants
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Corpus
Duration (min)
(mean ± std.)

Child Age (yrs)
(mean ± std.)

# Utts
Child            Adult

ASD-Verbal 17.76 ± 11.99 9.02 ± 3.10 11045 20313

ASD-Infants 10.35 ± 0.51 1.87 ± 0.78 1371 4120



Experiments

Features:

● X-vectors: State-of-the-art performance in speaker recognition (Snyder et. 

al., 2018) and speaker diarization (Sell et. al., 2018)

● DNN embeddings trained using speaker classification loss.

● In this work, pre-trained x-vectors used from the CALLHOME recipe1

Evaluation Settings:

● Classification: Standard low-resource evaluation (Ravi et. al., 2016)

○ Weakly-supervised: Randomly select 5 samples/class within each test 

session; Evaluation repeated 200 times to reduce bias.

● Clustering: Standard speaker diarization evaluation (Sell et. al., 2018)

○ Cluster embeddings into #spkrs clusters within each test session.

1. https://kaldi-asr.org/models/m6
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Experiments

Classification Models:
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Results

Classification:

Method ASD-Verbal ASD-Infants

Baseline (xent) 82.67 53.67

Baseline + test-backprop 78.64 56.20

Protonets 86.66 61.30

Table: Child/adult classification results (macro-F1, %)
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Clustering:

Method
ASD-Verbal ASD-Infants

K-Means SC K-Means SC

x-vectors 77.05 75.22 77.98 75.97

Siamese 78.22 79.18 78.30 76.86

Protonets 81.39 80.70 85.51 85.55

Table: Mean cluster purity (%) scores (SC: spectral clustering) 



Qualitative Analysis

What do protonet embeddings learn?

Figure: TSNE visualizations for protonet embeddings (left) and x-vectors (right) for 3 test 
sessions on the ASD corpora. Colors represents classes: Child and Psych, while shades 

within each color represent a session
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Conclusions

● Modeling child/adult classification across sessions as multiple, related tasks 
➔ Learn task-invariant representations using meta-learning

● How to extend this framework for a generic speaker embedding?

● Classification performance on ASD-Infants poor ➔ How to combine 
protonets within a domain adversarial framework?
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