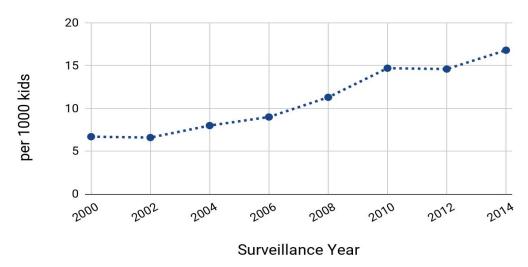


Meta Learning for Robust Child/Adult Classification from Speech

Nithin Rao Koluguri, Manoj Kumar, So Hyun Kim, Catherine Lord, Shrikanth Narayanan

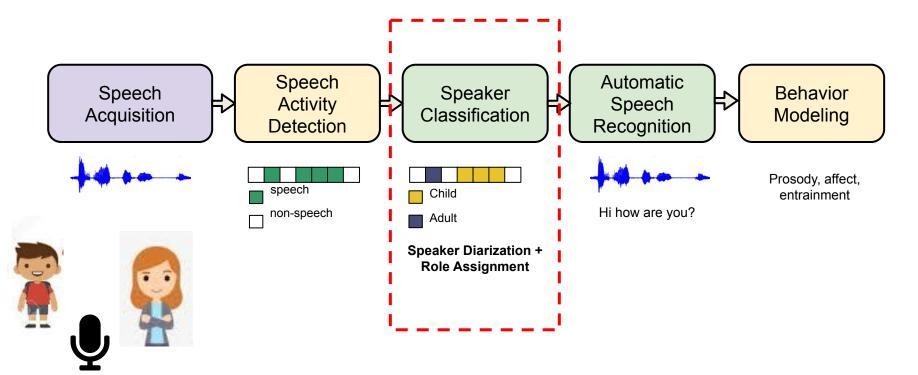
Presented by Manoj Kumar



Autism Spectrum Disorder

- Heterogeneous group of complex neurodevelopmental disorders
- Rising reported prevalence among children in US

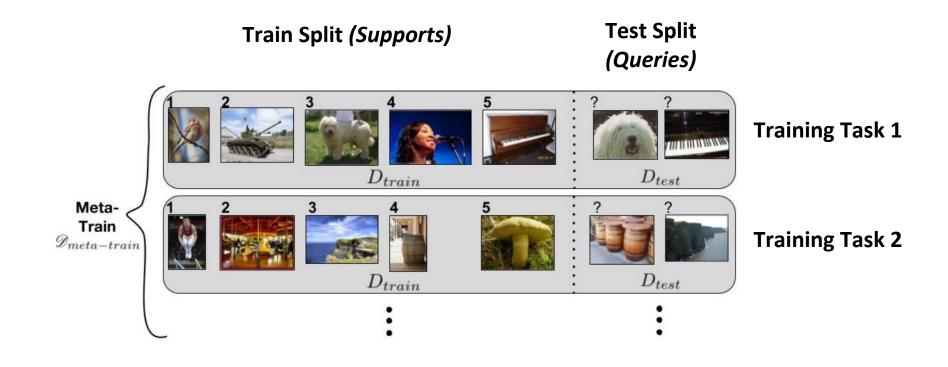
Reported prevalence of ASD among children (Baio et. al. 2018, CDC)


• Difficulties in communication and social interaction (Kenner 1943)

USC Child/Adult Classification from Speech

ASD Diagnosis and Assessment

- Primary tool: Semi-naturalistic conversations between child and clinician
- Automated analysis of diagnosis sessions can assist clinicians (Bone et al. 2016, Thabtah 2017, 2019)


Factors that confound a conventional child/adult classification system:

- Large within-class variability especially for child from age, gender, clinical symptom severity (Lee et. al., 1999, Gerosa et. al., 2009)
- Lack of sufficient amounts of balanced training data needed to tackle the above issue

Meta Learning: (Learning to learn) Paradigm of supervised learning developed for low-resource applications in computer vision (Finn et. al., 2017, Ravi et. al., 2016)

Meta Learning

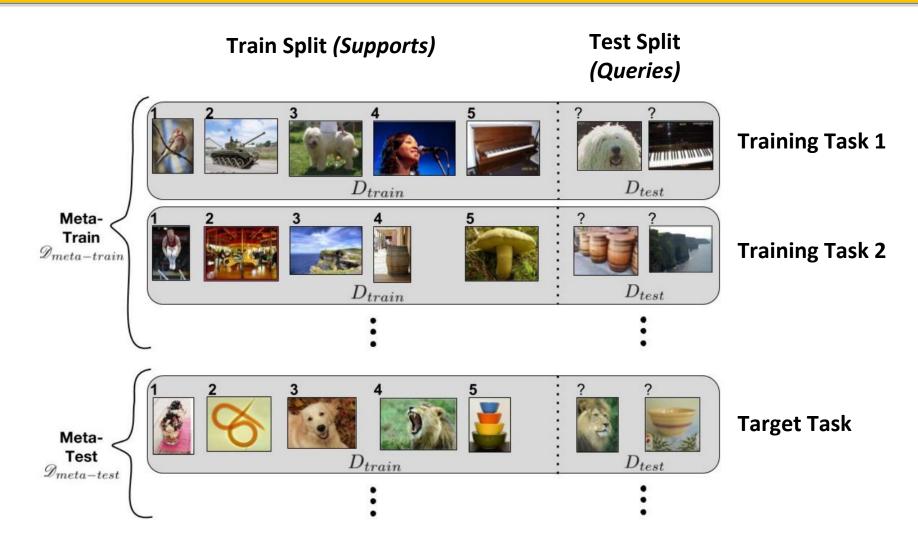
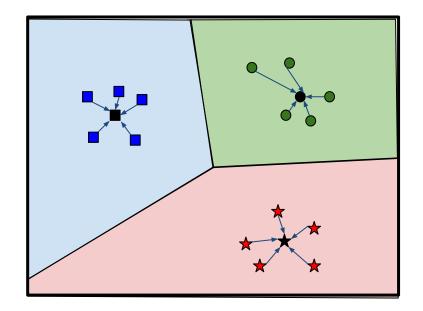


Illustration modified from (Ravi et. al., 2016)

USC Prototypical Networks: Illustration

Goal: Learn an embedding space to minimize distance-based task loss

Prototypical Networks: Represent each class using centroid (Snell et. al., 2016)


USC Prototypical Networks: Illustration

Goal: Learn an embedding space to minimize distance-based task loss

Prototypical Networks: Represent each class using centroid (Snell et. al., 2016) **Training Steps:**

1. Compute prototypes

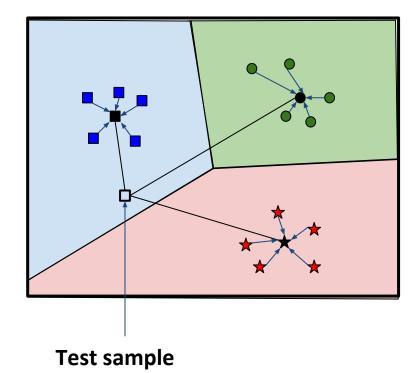
$$\mathbf{p}_{c} = \frac{1}{|S_{c}|} \sum_{(x_{i}, y_{i}) \in S_{c}} f_{\theta}(\mathbf{x}_{i})$$

USC Prototypical Networks: Illustration

Goal: Learn an embedding space to minimize distance-based task loss

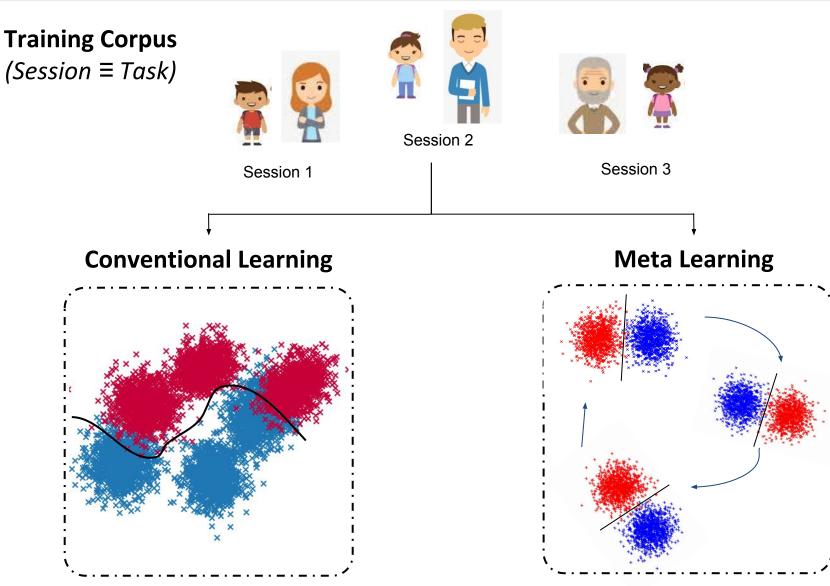
Prototypical Networks: Represent each class using centroid (Snell et. al., 2016) **Training Steps:**

1. Compute prototypes


$$\mathbf{p}_{c} = \frac{1}{|S_{c}|} \sum_{(x_{i}, y_{i}) \in S_{c}} f_{\theta}(\mathbf{x}_{i})$$

2. Estimate class posteriors

$$p_{\theta}(y = c | x) = \frac{\exp\left(-d_{\varphi}\left(f_{\theta}(\mathbf{x}), \mathbf{p}_{c}\right)\right)}{\sum_{c' \in C} \exp\left(-d_{\varphi}\left(f_{\theta}(\mathbf{x}), \mathbf{p}_{c'}\right)\right)}$$


3. Compute loss

$$L(y, \mathbf{x}) = -\sum_{c=1}^{C} y_c \log(p_{\theta}(y = c \mid \mathbf{x}))$$

Meta-Learning for Child/Adult Classification

- Two categories of child-adult interactions used: ADOS & BOSCC
 - Autism Diagnostic Observation Schedule (Lord et. al. 2000): Gold-standard tool for autism diagnosis and assessment
 - Brief Observation of Social Communication Change (Grzadzinski et. al. 2016): Treatment outcome measure to assess social-communication (SC) and restricted & repetitive behaviors (RRB)
- Corpora division:
 - **ASD-Verbal:** Fully-verbal children (Train & Test)
 - **ASD-Infants:** Minimally-verbal toddlers & infants (Test only)

Corpus	Duration (min)	Child Age (yrs)	# Utts			
	(mean ± std.)	(mean ± std.)	Child	Adult		
ASD-Verbal	17.76 ± 11.99	9.02 ± 3.10	11045	20313		
ASD-Infants	10.35 ± 0.51	1.87 ± 0.78	1371	4120		

Table: Data statistics for ASD and ASD-Infants

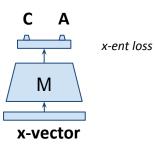
Features:

- X-vectors: State-of-the-art performance in speaker recognition (Snyder et. al., 2018) and speaker diarization (Sell et. al., 2018)
- DNN embeddings trained using speaker classification loss.
- In this work, pre-trained x-vectors used from the CALLHOME recipe¹

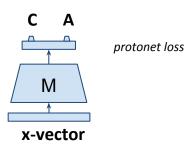
Evaluation Settings:

- Classification: Standard low-resource evaluation (Ravi et. al., 2016)
 - Weakly-supervised: Randomly select 5 samples/class within each test session; Evaluation repeated 200 times to reduce bias.
- Clustering: Standard speaker diarization evaluation (Sell et. al., 2018)
 - Cluster embeddings into #spkrs clusters within each test session.

1. https://kaldi-asr.org/models/m6

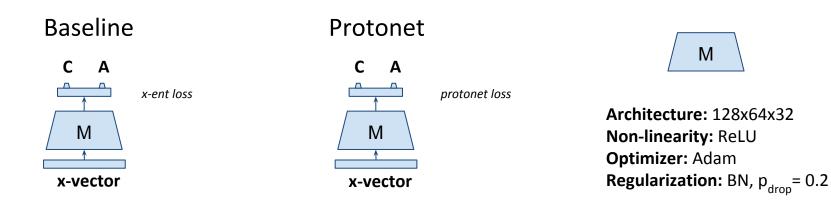


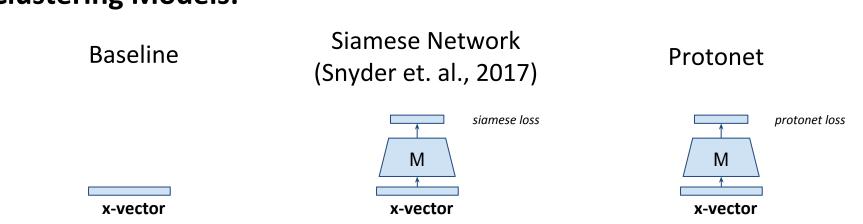
Experiments



Classification Models:

Protonet


Architecture: 128x64x32 Non-linearity: ReLU Optimizer: Adam Regularization: BN, p_{drop}= 0.2


Experiments

Classification Models:

Clustering Models:

Results

Classification:

Table: Child/adult classification results (macro-F1, %)

Method	ASD-Verbal	ASD-Infants
Baseline (xent)	82.67	53.67
Baseline + test-backprop	78.64	56.20
Protonets	86.66	61.30

Results

Classification:

Table: Child/adult classification results (macro-F1, %)

Method	ASD-Verbal	ASD-Infants
Baseline (xent)	82.67	53.67
Baseline + test-backprop	78.64	56.20
Protonets	86.66	61.30

Clustering:

Table: Mean cluster purity (%) scores (SC: spectral clustering)

Method	ASD-V	ASD-Verbal		ASD-Infants	
	K-Means	SC	K-Means	SC	
x-vectors	77.05	75.22	77.98	75.97	
Siamese	78.22	79.18	78.30	76.86	
Protonets	81.39	80.70	85.51	85.55	

What do protonet embeddings learn?

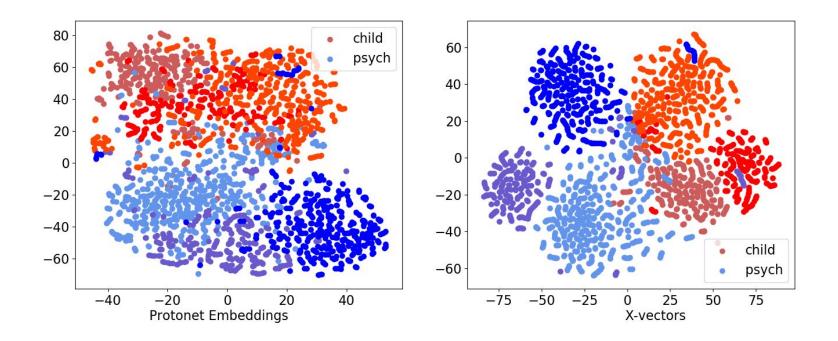


Figure: TSNE visualizations for protonet embeddings (left) and x-vectors (right) for 3 test sessions on the ASD corpora. Colors represents classes: Child and Psych, while shades within each color represent a session

- Modeling child/adult classification across sessions as multiple, related tasks
 → Learn task-invariant representations using meta-learning
- How to extend this framework for a generic speaker embedding?
- Classification performance on ASD-Infants poor → How to combine protonets within a domain adversarial framework?

Thank You

Manoj Kumar prabakar@usc.edu

