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Introduction

Sensor nodes: take observations, compress and send through
capacitated network

Relay nodes: route messages towards fusion center

Fusion center: infer state of nature

Objective: optimize information flow for inference task (for
maximizing relevant information content at the Fusion center)

Figure: An example of sensor network
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Problem setup

Concave utility function gs : R+ → R for each s ∈ S
Optimization problem:

max
ruv

∑
s∈S

gs(rs)

subject to ∀(u, v) ∈ E , ruv ≤ cuv

∀(u, v) ∈ E , ruv = −rvu
∀u ∈ V \ {S ∪ t}, ru = 0.
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Problem solution

Real-valued rates =⇒ convex program

Problem lies in category of Network Utility Maximization problems

Existing algorithms, for e.g. Dual Decomposition method

If rates and capacities are integer-valued, solution of real-valued
relaxation can be used to obtain integral solution, such that integral

rates r
(I )
uv are close to real-valued rates ruv in the sense that∑

s∈S
r

(I )
s =

⌊∑
s∈S

rs

⌋
(Lee et. al. ’13)
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Flow Optimization for Parameter Estimation

Sensor network with N spatially distributed sensors

Each sensor i :

yi = aT
i x + ηi , i = 1, ...,N,

jointly written as:

y = Ax + η

where
y ∈ RN : measurements result from all the N sensors;
A ∈ RN×q: known;
η ∈ RN : i.i.d. bounded noise with zero mean and variance σ2.
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Quantization

Uniform Quantizer, fine quantization

For each yi , denote its quantized version as di , and corresponding
quantization noise is εi = di − yi . So

di = aT
i x + ηi + εi , i = 1, ...,N,

For small quantization intervals ∆i , εi is approximately uncorrelated
with yi and has zero-mean with variance ∆2

i /12.

Fusion center performs least squares x̂ = A†d .

Q: Given the limited capacity of the network, to minimize the
estimation error at the fusion center, how should we optimize the
network flows and how many bits should we allocate to each sensor?
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Minimize the mean squared error E[‖x̂ − x‖2
2]

E[‖x̂ − x‖2
2] =E[‖A†d − x‖2

2]

=E[‖A†(Ax + η + ε)− x‖2
2]

≈Tr{A†diag(σ2 + ∆2
1/12, ..., σ2 + ∆2

N/12)(A†)T}

=
N∑
i=1

[
(σ2 + ∆2

i /12)‖A†(:, i)‖2
2

]
∆i ∝ 1

2ri , where ri is #bits allocated to sensor i . Equivalent to maximizing:

N∑
i=1

−‖A†(:, i)‖2
2/4ri ,

Now overall problem is cast as the proposed optimization problem
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Simulations for Parameter Estimation

Figure: An instance of a generated network
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Simulations for Parameter Estimation

Some sensors close to the target −→ strong signal
The rest are away from to the target−→ weak signal

Generated A ∈ R10×3 with entries ∼ U(0, 1), then multiplied its first
4 rows by α

Table: MSE of the estimated x̂

MSE α=1 α=0.3 α=0.1

Max-Flow 0.2673 1.1939 1.5068

Proposed 0.0148 0.0230 0.0241
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Flow Optimization for Detection

Classical results (Tsitsiklis ’93):

Problem: design optimal quantizer to perform binary hypothesis
testing given number of quantization levels

Under hypothesis Hi , i = 0, 1, Y has the distribution Pi

Deterministic n-level quantizer is measurable function that maps R to
{1, 2, . . . , n}
Γn : set of all randomized n-level quantizers

Qi (γ): distribution of γ(Y ) under hypothesis Hi , where γ is a
randomized quantizer
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Utility function for Detection

Surrogate problem: find quantizer to maximize Kullback-Leibler(KL)
divergence between Q1(γ) and Q0(γ)

Neyman-Pearson testing: error exponent is KL divergence

f (n) := sup
γ∈Γn

D(Q1(γ)||Q0(γ))

Maximized by likelihood ratio quantizer. Likelihood ratio quantizer γt
with thresholds t = (t0, t1, . . . , tn) ∈ [0,∞]n+1 satisfies:

Pi (γt(Y ) = ` and L(Y ) /∈ [t`−1, t`]) = 0,

L(Y ): likelihood ratio between P1 and P0

f (n) = max
t

D(Q1(γt)||Q0(γt))

Utility function: g(r) = f (2r )
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Sensor network setting

Observations from sensors are conditionally independent

P
(j)
i : distribution of observation Yj ∈ Yj from sensor j under the

hypotheses Hi , i = 0, 1

Q
(j)
i = Q

(j)
i (γj): distribution of the quantized observation γj(Yj) from

j th sensor

Objective:

max
nj ,γj∈Γnj

N∑
j=1

D
(
Q

(j)
1 (γj)||Q

(j)
0 (γj)

)

= max
nj ,tj

N∑
j=1

D
(
Q

(j)
1 (γtj )||Q

(j)
0 (γtj )

)

= max
rj

N∑
j=1

f (j)(2rj ) = max
rj

N∑
j=1

g (j)(rj)
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Concavity of utility functions

Utility function: g(r) = f (2r ), where r = log2(n) and n is the number
of quantization levels

Linear interpolation to get surrogate utility function for real-valued
relaxation

It is difficult to show that g(r) is concave for general distributions

We verified via simulations that it is indeed concave for various
distributions
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Figure: Plot of g(r): P0 is N (0, 1) and P1 is N (3, 1).
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Figure: Plot of g(r): P0 is Exp
(

1
2

)
and P1 is Exp

(
1
6

)
.
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Simulations for binary hypothesis testing

Small network to illustrate the performance

We compare performance with that of Max-Flow

Four different settings of distributions

In all settings, under H0, all sensors follow N (0, 1)

Gain over Max-Flow depends on factors such as distance between the
distributions under the two hypothesis and variability across sensors
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Setting 1

Proposed framework: 5.1152, Max-FLow: 5.1152
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Setting 2

Proposed framework: 124.0653, Max-FLow: 99.3528 20 / 24



Setting 3

Proposed framework: 103.7984, Max-FLow: 65.3699 21 / 24



Setting 4

Proposed framework: 96.9858, Max-FLow: 57.3427 22 / 24



Conclusion

Showed that problem to find optimal rates in sensor networks tasked
with inference objectives, can be cast as optimization problem

Problem lies in the category of Network Utility Maximization
problems, if appropriate utility functions are assigned to each sensor

Showed existence of utility functions in common parameter estimation
setting and detection setting

Simulations illustrate the gain of the proposed framework over the
traditional Max-Flow algorithm
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Thank You!
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