

STRUCTURAL SPARSIFICATION FOR FAR-FIELD SPEAKER RECOGNITION WITH INTEL® GNA

Jingchi zhang^{*}, Jonathan Huang[^], Michael Deisher [^], Hai Li^{*}, Yiran Chen^{*}

* Duke University

 ${\times}{\times}$ Intel Corporation

Background: Speaker Recognition and GNA

Answering one question: "Who is the speaker?"

- Log into your Netflix account on a family laptop.
- Personalization: play my favorite music.

INTEL® GNA takes 8 16bit integers or 16 8bit integers per DMA transaction

<u>Motivation: accelerate the</u> <u>Speaker Recognition models</u> <u>on GNA.</u>

Methodology: Structural sparsity

- Learning structural sparsity during training:
 - Split the weight into groups w_(1,...,K):
 e.g. a matrix --> K vectors
 - 2. Apply L2 regularization on each w_k : $||w_k||_2 = \sqrt{\sum_{i=1}^{|w_k|} (w_{k_i})^2} (L_2 \text{ norm})$

ion on each w_k : $(V_{k,i})^2$ (L₂ norm) $(L_2 norm)$

channel-wise $W_{:,c_l,:,:}^{(l)}$

Wen, W., Wu, C., Wang, Y., Chen, Y. and Li, H., 2016. Learning structured sparsity in deep neural networks. In Advances in neural information processing systems (pp. 2074-2082).

3. Sum L2 over all groups as a regularization (Group Lasso regularization) and add it to loss function: W_k

 $R(w) = \sum_{k=1}^{K} \|w_k\|_2$

4. Optimize new loss function: $\arg\min_{w} \{E(w)\} = \arg\min_{w} \{E_D(w) + \lambda \cdot R(w)\}$

In actual update in SGD:

$$w_k \leftarrow w_k - \eta \cdot \left(\frac{\partial E_D(w)}{\partial w_k} + \lambda \cdot \frac{w_k}{\|w_k\|_2}\right)$$

• Fixed the sparse structures and retrain the model:

$$w_k \leftarrow w_k - \eta \cdot \left(\frac{\partial E_D(w)}{\partial w_k} \cdot \theta(w_k)\right)$$
, where $\theta(\xi) = \begin{cases} 0, \xi = 0\\ 1, \xi \neq 0 \end{cases}$

Experiment: Setup

- Model topology:
 - Based on x-vector model structure and write TDNN as one-dimension CNN layer.
- Loss function:
 - Additive Margin Softmax (AM-softmax)
 - Eliminate the PLDA and easy to deploy on hardware
- Training detail:
 - Initialize with a pretrained dense model.
 - Train with sparse regularization
 - Finetune without sparsity
- Dataset:
 - Training: VoxCeleb 1 and 2
 - Testing: VOiCES far-field

	layer context	Affine	Convolution
Layer1	[t-2,t+2]	200×512	512 40×5
Layer2	${t-2,t,t+2}$	1536×512	512 512×3
Layer3	${t-2,t,t+2}$	1536×512	512 512×3
Layer4	{t}	512×512	512 512×1
Layer5	{t}	512×512	512 512×1
Stats pooling	[0,T)	512T×1024	N/A
Segment6	$\{0\}$	1024×256	N/A
Softmax	{0}	256×N	N/A

denotes the number of training speakers.

Data augmentation: Pyroomacoustic, MUSAN and AudioSet

Result: Sparsity

Apply sparsity on:

0.0

0.2

0.5

0.75

1.5

1.0

lambda (* e-2)

2.0

4.0

- Filters: for all hardware, easy to deploy
- Chunks: every 8 or 16 elements, for GNA
- Only on first four layers
- When λ increases, the sparsity increases.
- The sparsity growth in each layer is different. •

ъ 0.4

percentage 0.2

0.0

0.25

0.5

1.0

1.5

lambda (* e-4)

0.0

0.2

0.5

0.75

1.0

lambda (* e-4)

3.0

2.0

4.0

5

2.0

1.5

4.0

Result: Performance

- Compared with dense model as a baseline:
 - When the number of non-zero parameters is large, sparse models achieve lower EER. When the number of non-zero parameters is small, dense models have better performance.
 - When non-zero parameter count is larger than 1.5 million, there is a tendency that chunk-8 has the best performance.
- Actual speedup on GNA:
 - Under the same EER, structural sparse models are always faster than the dense models.
 - When speedup is around 1.2x, sparse models even have lower EER.

Conclusion

- In this paper, we applied structural sparsification for speaker recognition models.
- By using group Lasso regularization, we kept the good performance of the original model while reducing the number of parameters and accelerating the actual inference of the models.
- Feel free to contact: jingchi.zhang@duke.edu