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Background: Speaker Recognition and GNA

Answering one question: “Who is the speaker?”
* Log into your Netflix account on a family laptop.

* Personalization: play my favorite music.
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Methodology: Structural sparsity

e Learning structural sparsity during training:
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neural networks. In Advances in neural information processing systems (pp. 2074-2082).
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2. Apply L2 regularization on each wy:

3. Sum L2 over all groups as a regularization (Group Lasso regularization) and add
it to loss function: "
k

R(w) = Ti=1llwgll
4. Optimize new loss function:
arg min{E (w)} = argmin{Ep(w) + 41 - R(w)}
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In actual update in SGD:
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e Fixed the sparse structures and retrain the model:
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Experiment: Setup

e Model topology:

e Training detail:

— Based on x-vector model structure and write TDNN as one-dimension CNN layer.

Loss function:

— Additive Margin Softmax (AM-softmax)

— Eliminate the PLDA and easy to deploy on hardware

— Initialize with a pretrained dense model
— Train with sparse regularization

— Finetune without sparsity

Dataset:

— Training: VoxCeleb 1and 2

— Testing: VOICES far-field

layer context| Affine |Convolution
Layerl [t-2,t+2] 200512 | 512 40x5
Layer2 {t-2,t,t+2} | 1536x512 | 5125123
Layer3 {t-2,t,t+2} | 1536%x512 | 5125123
Layer4 {t} 512x512 | 512512x1
Layer5 {t} 512x512 | 5125121
Stats pooling [0,T) S512Tx 1024 N/A
Segment6 {0} 1024 %256 N/A
Softmax {0} 256 xN N/A

denotes the number of training speakers.
— Data augmentation: Pyroomacoustic, MUSAN and AudioSet




Result: Sparsity

e Apply sparsity on:

Filters: for all hardware, easy to deploy

Chunks: every 8 or 16 elements, for GNA

Only on first four layers

e When Aincreases, the sparsity increases.

e The sparsity growth in each layer is different.

e Inlayer 4 the sparsity would result in higher penalty on the AM-softmax
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Result: Performance

e Compared with dense model as a baseline:

* When the number of non-zero parameters is large, sparse models achieve lower
EER. When the number of non-zero parameters is small, dense models have
better performance.

* When non-zero parameter count is larger than 1.5 million, there is a tendency
that chunk-8 has the best performance.

Actual speedup on GNA:

* Under the same EER, structural sparse models are always faster than the dense
models.

* When speedup is around 1.2x, sparse models even have lower EER.
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Conclusion

e In this paper, we applied structural sparsification for speaker
recognition models.

e By using group Lasso regularization, we kept the good
performance of the original model while reducing the number
of parameters and accelerating the actual inference of the
models.

e Feel free to contact: jingchi.zhang@duke.edu



