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Introduction and background




Spoofing attacks

e Speaker recognizers are vulnerable to attacks trivially generated:
o Replay someone’s voice (Physical access)
o Generate someone’s voice using text-to-speech or voice
conversion approaches (Logical access)

e Attack approaches, however, introduce detectable artifacts

e Recent approaches rely on end-to-end detectors
o Detectors can then be used in tandem with speaker recognizers




Spoofing attacks
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Generalized setting
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Generalized setting

e Some recent approaches and benchmarks for detection of spoofing
attacks do not reflect real life use cases:
o Real detectors do not know in advance which approach the
attacker will use
o Detectors should be able to detect both LA and PA attacks

e We thus tackle that issue by:
o Training detectors known to work well for LA/PA
o Further training a third model which predicts the coefficient of a
convex combination between the outputs of the other models
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Modeling approach

Temporal pooling
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e Different approach depending on input feature type

e V' is then projected into a final output score through an affine
transformation learned along with the complete model




Temporal pooling
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e Summarizes a sequence of local descriptors

e Allows processing of inputs of arbitrary length

owr)

W (u”" o)

) |

)

-

w; —

N

a; = tanh (AV;)

e®i

edi

N(T
S

~

/




Modeling approach

e Three independent models and Y14
features

e Mixture model learns to combine
outputs of other models

e We chose LFCCs for the LA
model and product spectra for the
PA and mixture models I
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Training

Loss: binary cross entropy over combined outputs

Unbalanced data: clean examples are oversampled; every
mini batch is balanced

Training is carried out with Stochastic Gradient Descent using
mini-batches of effective size 16. Polyak's acceleration is also
employed




Evaluation




Evaluation

e Data introduced for the ASVSpoof 2019 challenge. Two sub-challenges:
o Logical access: attacks created with speech synthesis
o Physical access: attacks created with simulated replay

# Recordings
# Speakers Logical Access Physical Access
Bona fide Spoof Bonafide Spoof
Training 20 2580 22800 5400 48600
Development 20 2548 22296 5400 24300




Evaluation - LA

System Description Dev: oy

EER min-tDCF EER min-tDCF

Privileged [1] CQCC-GMM  0.43% 0.0123 9.57% 0.2366

LFCC-GMM  2.71% 0.0663 8.09% 0.2116

Privileged LFCC-ResNet  0.04% 0.0004 6.38 % 0.1423

LFCC 0.08% 0.0023 14.38% 0.3231

Pooled data ProdSpec 0.01% 0.0002 12.77% 0.2448

MGDCC 0.27% 0.0066 13.13% 0.2953

LFCC 0.08% 0.0021 15.84% 0.3476

Proposed- Reshet ProdSpec 0.03% 0.0002 15.73% 0.2725

Lambda 0.04% 0.0004 13.12% 0.2962

Mixture 0.01% 0.0002 9.87% 0.1890




Evaluation - PA

System Description Dev.. Eva!.
EER min-tDCF EER min-tDCF
Privileged [1] CQCC-GMM 9.87% 0.1953 11.04 0.2454
LFCC-GMM 11.96% 0.2554 13.54 0.3017
Privileged ProdSpec-ResNet  0.87% 0.0232 1.98% 0.0579
LFCC 2.39% 0.0835 2.96% 0.1017
Pooled data ProdSpec 0.85% 0.0251 4.31% 0.1538
MGDCC 3.89% 0.1174 5.99% 0.1858
LFCC 1.87% 0.0656 3.99% 0.1408
ProdSpec 3.80% 0.1111 4.94% 0.1479
Fropased- = Kesivel I amhida 132% 00317  229%  0.0641
Mixture 0.78 % 0.0275 1.75% 0.0606




Conclusions

e Simple pooling strategies are not enough to recover the performance of
specialized privileged detectors

e Proposed mixture approach is able to recover some of the lost
performance when one moves from the standard i.i.d. to the generalized
case

o Qutperformed the privileged baseline for the PA case

e Evaluation of mixture scores yields better performance than individual
mixture components

e Future work: New underlying models as well as speech representations
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