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Introduction and background
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Spoofing attacks

● Speaker recognizers are vulnerable to attacks trivially generated:
○ Replay someone’s voice (Physical access)
○ Generate someone’s voice using text-to-speech or voice 

conversion approaches (Logical access)

● Attack approaches, however, introduce detectable artifacts

● Recent approaches rely on end-to-end detectors
○ Detectors can then be used in tandem with speaker recognizers
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Spoofing attacks
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Generalized setting
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Generalized setting
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● Some recent approaches and benchmarks for detection of spoofing 
attacks do not reflect real life use cases:

○ Real detectors do not know in advance which approach the 
attacker will use

○ Detectors should be able to detect both LA and PA attacks

● We thus tackle that issue by:
○ Training detectors known to work well for LA/PA
○ Further training a third model which predicts the coefficient of a 

convex combination between the outputs of the other models



Approach description and model 
details
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Modeling approach
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● Different approach depending on input feature type

● V is then projected into a final output score through an affine 
transformation learned along with the complete model

Temporal pooling



Temporal pooling
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●Summarizes a sequence of local descriptors

● Allows processing of inputs of arbitrary length



Modeling approach
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● Mixture model learns to combine 
outputs of other models

● We chose LFCCs for the LA 
model and product spectra for the 
PA and mixture models



Training
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● Loss: binary cross entropy over combined outputs

● Unbalanced data: clean examples are oversampled; every 
mini batch is balanced

● Training is carried out with Stochastic Gradient Descent using 
mini-batches of effective size 16. Polyak's acceleration is also 
employed



Evaluation
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Evaluation
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● Data introduced for the ASVSpoof 2019 challenge. Two sub-challenges:
○ Logical access: attacks created with speech synthesis
○ Physical access: attacks created with simulated replay



Evaluation - LA
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Evaluation - PA
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Conclusions
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● Simple pooling strategies are not enough to recover the performance of 
specialized privileged detectors

● Proposed mixture approach is able to recover some of the lost 
performance when one moves from the standard i.i.d. to the generalized 
case

○ Outperformed the privileged baseline for the PA case

● Evaluation of mixture scores yields better performance than individual 
mixture components

● Future work: New underlying models as well as speech representations
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