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Training multiple financial indicators 
simultaneously to analyse market dependencies 

and to recover missing data



Presentation layout
1. Financial data series
2. Background

a. Gaussian processes (GPs)
b. Spectral mixture kernel (SM)
c. Multi-output Gaussian processes (MOGPs)
d. Multi-output spectral mixture kernel (MOSM)

3. Experimental setup: data, methods, and optimization
4. Results and comparison

a. Gold, Oil, NASDAQ, USD-index
b. Currency exchanges with the USD

5. Discussion and conclusion



Financial data series

Relevant why?

● Understanding market behaviour and dynamics
● Exploring market interdependencies between stocks, currencies, ...
● Predicting stock markets (ambitious!)
● Predict alternative market trajectory when omitting key (governmental) policy

Figures: https://www.marketwatch.com/story/dow-futures-drop-220-points-as-stock-market-extends-rout-2018-10-24
https://worthwhile.typepad.com/worthwhile_canadian_initi/2007/11/recent-oil-pric.html



Background: Gaussian processes

Gaussian processes: a Gaussian distribution over functions [1]

where m(x) is the mean function,
and k(x,x’) the covariance function

in general we assume stationarity, i.e. 
[1] Rasmussen and Williams, “Gaussian processes for machine learning”, MIT Press, 2006



Background: a trained RBF kernel

A trained RBF kernel: the mean represents the predicted time series where the confidence intervals 
collapse near our data but widen when further away



Background: spectral mixture kernel
Spectral mixture kernel: define the covariance function in frequency space [2]

Using the Fourier pair above, we define Q Gaussian distributions in frequency 
space, and obtain the following kernel:

[2] Wilson and Adams, “Gaussian process kernels for pattern discovery and extrapolation”, ICML 30, 2013

τ is the distance between two points 
in the time domain
μ is the frequency of the pattern
Σ is a covariance matrix of the 
inverse length scales
w is the weight for each Q



Background: a trained spectral mixture kernel

A spectral mixture kernel with Q=2, fitting two Gaussians in the frequency domain to fit our data



Background: MOGPs and the MOSM
Multi-output Gaussian processes: learn inter-channel dependencies by using a 
matrix of covariance functions between channel i and channel j

We specify the multi-output spectral mixture kernel (MOSM) [3]

[3] Parra and Tobar, “Spectral mixture kernels for multi-output Gaussian processes”, NIPS 30, 2017

τ is the distance between two points 
in the time domain
ɑ is the weight for each Q
θ the delay
ϕ the phase shift
μ is the frequency of the pattern
Σ is a covariance matrix of the 
inverse length scales



Background: learning across channels

Correlating four channels using the MOSM: train signal frequencies, amplitudes, delays and 
phases between channels



Experimental setup

● Data from multiple time series
● Using the MOSM kernel as our model
● Hyper parameter estimation for improved training using BNSE [4]
● Training the hyper parameters using L-BFGS-B and an Nvidia GeForce

GTX 1080 video card
● Predict and imputate data with the trained model
● Analyze the trained hyper parameters to learn about cross-correlations

[4] Tobar, “Bayesian nonparametric spectral estimation”, NIPS 32, 2018



Data imputation Cross-correlation matrix

Results: gold, oil, NASDAQ, USD-index

Red shade: missing data
Black dots: data points used for training
Colored line: prediction mean and confidence interval



Results: currency exchanges with the USD

Red shade: missing data
Black dots: data points used for training
Colored line: prediction mean and confidence interval



Results and comparison

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for four kernels. The errors are 
normalized between the channels so that they are comparable.

We observe that the MOSM is a flexible kernel that is able to fit the data well.

[17] Wilson and Adams, “Gaussian process kernels for pattern discovery and extrapolation”, ICML 30, 2013
[18] Ulrich, “Gaussian process kernels for cross-spectrum analysis in electrophysiological time series”, 2016
[19] Parra and Tobar, “Spectral mixture kernels for multi-output Gaussian processes”, NIPS 30, 2017
[20] Goovaerts, “Geostatistics for natural resources evaluation”, Oxford University Press, 1997
[21] Wilson, “Covariance kernels for fast automatic pattern discovery and extrapolation with Gaussian processes”, 2014



Discussion and conclusion
● MOSM and other MOGPs are capable of capturing cross-correlation 

information from financial time series
● The MOSM is a more flexible kernel that can fit the data better, but is also 

harder to train
● Parameter estimation is crucial for all MOGPs to improve training results
● The interpretation of trained hyper parameter values can aid in increased 

understanding of market dependencies and dynamics
● Future work could improve parameter estimation and the use of 

non-Gaussian processes (such as Student-t processes)


