ICASSP 2020

Temporal Coding in Spiking Neural Networks with Alpha Synaptic Function

Iulia M. Comșa

Conventional ANNs

- Inspired by the human brain
- Benchmarks on tasks solved by humans
- ...but compute in a fundamentally different way compared to the biological brain
- Lack a time dimension

Biological networks

- Neuron spikes are **discrete events**
- Asynchronous
- Can encode information in temporal patterns of activity
- Energy-efficient

Source: https://en.wikipedia.org/wiki/Electrophysiology

Information coding in biological brains

- Conventional approach: rate coding
 - **slowly** accumulate over spikes
- Alternative: temporal coding
 - single spikes at precise times
 - fast but possibly less accurate
- Information is carried by relative spike times
 - retinal ganglion cells encode the spatial structure of an image in the relative timing of their first spikes (Gollish & Meister, 2008)
 - tactile afferents encode information about fingertip events in the relative timing of the first spikes (Johansson & Birznieks, 2004)
- Single spikes carry information across brain areas
 - 10 synaptic stages crossed within 100ms in the visual system, suggesting that responses are made on the basis of single spikes (Thorpe & Imbert, 2016)

Source: https://www.youtube.com/watch?v=yy994HpFudc by Michelle Kuykendal and Gareth Guvanasen

Information can be encoded in the timing of individual spikes.

Artificial networks with temporal coding

- Earlier spikes encode more salient information
- Consider a classification problem with m inputs and n possible classes
- Temporal encoding
 - m input neurons
 - spike at time proportional to brightness of corresponding input pixel
- Temporal decoding
 - o n output neurons
 - class k iff kth neuron spikes earliest

Building a spiking model

- Alpha synaptic function: $t \cdot e^{-\tau t}$
- Custom decay: τ
- Weighted presynaptic inputs: W_{i}
- Fixed spiking threshold: θ
- May not spike
- Allows forgetting inputs
- Richer dynamics than nonleaky models
- Computing the spike time given a set I of inputs: $t_{out} = \frac{B_I}{A_I} \frac{1}{\tau}W(-\tau \frac{\theta}{A_I}e^{\tau \frac{B_I}{A_I}})$ where $A_I = \sum_{i \in I} w_i e^{\tau t_i}$ $B_I = \sum_{i \in I} w_i e^{\tau t_i} t_i$

Learning with backpropagation

- Usual problem with spiking networks: non-differentiable spike events
- Learning goal with temporal coding: adjust the timing of outputs
- Postsynaptic spike times depend on presynaptic spike times and their weights

$$\frac{\partial t_{out}}{\partial t_j} = \frac{w_j e^{\tau t_j} ((t_j - \frac{B_I}{A_I})\tau + W_I + 1)}{A_I (1 + W_I)} \qquad \qquad \frac{\partial t_{out}}{\partial w_j} = \frac{e^{\tau t_j} (t_j - \frac{B_I}{A_I} + \frac{W_I}{\tau})}{A_I (1 + W_I)} \qquad \qquad \text{where } W_I = W(-\frac{\theta}{A_I} e^{\frac{B_I}{A_I}})$$

- Minimize cross-entropy loss with Adam optimizer
- At the output layer, minimize spike time: softmax of negative spike times

Synchronization pulses

- A set of neurons connected to each non-input layer
- Act like temporal biases
- Ensure there are spikes (eventually)
- Learnable spike times and weights

MNIST experiment

Hyperparameter	Search space	Chosen value
Decay constant $ au$	[0.1, 2]	0.18
Fire threshold θ	[0.1, 1.5]	1.17
Number of hidden layers.	[0, 4] × [2, 1000]*	1 × 340
Number of pulses per layer.	[0, 10]	10
Multiplier for non-pulse weights initialization.	[-10, 10]	-0.275
Multiplier for pulse weights initialization.	[-10, 10]	7.84
Learning rate for network weights.	[10 ⁻⁵ , 1]*	10 ⁻⁴ × 2.02
Learning rate for pulse timings.	[10 ⁻⁵ , 1]*	10 ⁻² × 5.95
Mini-batch size for Adam optimization.	[1, 1000]*	5
Clipping value for derivatives.	[1, 1000]	539.7
Penalty added to presynaptic weights if a neuron didn't fire.	[0, 100]	48.38

* - logarithmic search space

MNIST experiment

- Network size 784x340x10 (plus 10 synchronization pulses)
- MNIST digits were encoded as spikes at times between 0 and 1
- Pulses were initialized to spike at evenly distributed times between 0 and 1

- Results: **97.96%** accuracy on MNIST test
- For comparison: a **non-convolutional** ReLU DNN achieves 97.9%

Slow and fast classification regimes

During training, the same network **spontaneously** switched between two operating regimes:

- slow but more accurate
- very fast but less accurate

	Slow regime	Fast regime
Training accuracy (%)	99.9633	99.885
Training loss (mean)	0.002884	0.00444
Test accuracy (%)	97.96	97.4
Test loss (mean)	0.173248	0.19768

The same speed-accuracy trade-off is observed in human decision making.

Take-away points

- The timing of single spikes efficiently encodes information in biological brains.
- Spiking networks with temporal coding:
 - can be trained with backpropagation
 - can perform digit recognition at competitive accuracies
- Interesting from a multidisciplinary perspective:
 - shed light on the representational capabilities of biological-like networks
 - possible model for efficient neuromorphic computing
- Opening pathways towards spiking nets research:
 - recurrent, state-based spiking networks that perform efficient computation

Open-source code available https://github.com/google/ihmehimmeli

Thank you!

