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Conventional ANNs Biological networks

e Inspired by the human brain e Neuron spikes are discrete events

e Benchmarks on tasks solved by humans e Asynchronous

e ..but compute in a fundamentally different e Can encode information in temporal
way compared to the biological brain patterns of activity

e lLack atime dimension e Energy-efficient
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Source: https://en.wikipedia.org/wiki/Electrophysiology
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Information coding in biological brains

e Conventional approach: rate coding
o  slowly accumulate over spikes

Alternative: temporal coding

o  single spikes at precise times
o fast but possibly less accurate

e Information is carried by relative spike times

o retinal ganglion cells encode the spatial structure of an image in the relative
timing of their first spikes (Goliish & Meister, 2008)

o tactile afferents encode information about fingertip events in the relative
timing of the first spikes (Johansson & Birznieks, 2004)

Single spikes carry information across brain areas

o 10 synaptic stages crossed within 100ms in the visual system, suggesting
that responses are made on the basis of single spikes (Thorpe & Imbert, 2016)

Source: https://www.youtube.com/watch?v=yy994HpFudc
by Michelle Kuykendal and Gareth Guvanasen

Information can be encoded in the timing of individual spikes. Google Research


https://www.youtube.com/watch?v=yy994HpFudc

Artificial networks with temporal coding

e Earlier spikes encode more salient information 0! ! ! ! ! L _0.0
e Consider a classification problem with m inputs - _ : 2:;
and n possible classes ‘P-. -0.3

. 10 - g . - §-04 W

e Temporal encoding .E s El

o minput neurons 15 - = - - B- 0:6 %

o spike at time proportional to brightness of 1. 07 °
corresponding input pixel 20 - = F - Boos

e Temporal decoding 25 - !g ~ :fspike

0 5 10 15 20 25

o n output neurons
o class k iff k™" neuron spikes earliest
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Building a spiking model IR RR R RN RN
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e Allows forgetting inputs V(t) =3 wi(t — t;)er® )
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e Richer dynamics than nonleaky models
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e Computing the spike time given a set I of inputs: tou = — — =W(-7——¢"71) where
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Learning with backpropagation

e Usual problem with spiking networks: non-differentiable spike events
e Learning goal with temporal coding: adjust the timing of outputs

e Postsynaptic spike times depend on presynaptic spike times and their weights

Otour _ wi€™ (L — FH)T+ Wi +1) Otoue _ €7V (t; — 35+ ) where W, — W (—Le )
ot; Ar(1+Wy) ow; N Ar(1+Wryp) o

e Minimize cross-entropy loss with Adam optimizer

e At the output layer, minimize spike time: softmax of negative spike times
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Synchronization pulses

Input  Hidden Output
e A set of neurons connected to each non-input layer

e Act like temporal biases
e Ensure there are spikes (eventually)

e learnable spike times and weights
Sync pulses
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MNIST experiment

Hyperparameter

Search space

Chosen value

Decay constant ¢

Fire threshold 6

Number of hidden layers.

Number of pulses per layer.

Multiplier for non-pulse weights initialization.
Multiplier for pulse weights initialization.
Learning rate for network weights.

Learning rate for pulse timings.

Mini-batch size for Adam optimization.

Clipping value for derivatives.

Penalty added to presynaptic weights if a neuron didn't fire.

[1, 10001~
[1, 1000]

[0, 100]

0.18
1.17

1 x 340

10

-0.275
7.84

1074 x 2.02
1072 x 5.95
5

539.7

48.38

* - logarithmic search space
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MNIST experiment

e Network size 784x340x10 (plus 10 synchronization pulses)
e MNIST digits were encoded as spikes at times between O and 1

e Pulses were initialized to spike at evenly distributed times between O and 1

e Results: 97.96% accuracy on MNIST test

e For comparison: a non-convolutional ReLU DNN achieves 97.9%
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Slow and fast classification regimes

During training, the same network spontaneously

switched between two operating regimes:

e slow but more accurate

e very fast but less accurate

Slow regime Fast regime
Training accuracy (%) 99.9633 99.885
Training loss (mean) 0.002884 0.00444
Test accuracy (%) 97.96 97.4
Test loss (mean) 0.173248 0.19768

The same speed-accuracy trade-off is observed
in human decision making.
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Take-away points

e The timing of single spikes efficiently encodes information in biological brains.
e Spiking networks with temporal coding:
o can be trained with backpropagation
o can perform digit recognition at competitive accuracies
e Interesting from a multidisciplinary perspective:
o shed light on the representational capabilities of biological-like networks
o possible model for efficient neuromorphic computing
e Opening pathways towards spiking nets research:

o recurrent, state-based spiking networks that perform efficient computation
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Open-source code available

https://github.com/google/ihmehimmeli

Thank you!

IuliaComsa  Krzysztof Potempa Luca Versari Thomas Fischbacher Andrea Gesmundo  Jyrki Alakuijala

Google Research



