Extrapolated Alternating Algorithms for Approximate Canonical Polyadic Decomposition

Andersen M.S. Ang[†], Jeremy, E. Cohen[#], Le T.K. Hien[†], Nicolas Gillis[†]

† Department of Mathematics and Operational Research, Université de Mons, Belgium # CNRS, Université de Rennes, Inria, IRISA Campus de Beaulieu, Rennes, France

ICASSP 2020 May 4-8 2020

Lecture session WE3.L6: Optimization Algorithms II

Overview

- 1. Problem statement
- 2. Existing Alternating Algorithms
- 3. Proposed Approaches
- 4. Experiments
- 5. Summary and Perspective

Paper information

- ► Paper number: WE3.L6.1
- ► Paper preprint: https://bit.ly/3aRn1yw
- ► Slide avaliable: angms.science

aCPD : Approximate Canonical Polyadic Decomposition

▶ Given a order p tensor $T \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_p}$ and a natural number r, find a tensor \hat{T} s.t.

aCPD:
$$\hat{T} = \underset{\text{rank}(G) < r}{\operatorname{argmin}} \left\| T - G \right\|_F^2$$
,

▶ Rank of a tensor G defined as

$$\min \left\{ r \in \mathbb{N} \mid \exists a_i^{(j)} \in \mathbb{R}^{n_j}, G = \sum_{i=1}^r \bigotimes_{j=1}^p a_i^{(j)} \right\}.$$

► ⊗ Tensor product

$$[a^{(1)} \otimes \cdots \otimes a^{(p)}]_{i_1 \dots i_p} = \prod_{j=1}^p a_{i_j}^{(j)}.$$

- ► Motivation : A challenging task in general
 - ► Nonconvex problem.
 - ► Degeneracy and swamps.
 - Escaping saddle points.

Existing Alternating Algorithms

- ▶ Update one block at a time, while keeping others fixed
- ► Two categories

		Exact Block-Coordinate Descent	Approximate Block-Coordinate Descent
S	ubproblem	solved optimally	solved approximately
	Example	Alternating Least Squares (ALS)	Various alternating gradient methods
		Hierarchical ALS (HALS)	

► ALS update on block $A^{(j)}$

$$A_{\text{New}}^{(j)} = \underbrace{g(T, A^{(l \neq j)})}_{\text{update function}} := T_{[j]} B^{(j)^{\dagger}}, \quad B^{j^T} = \underbrace{\underbrace{0}_{l \neq j}}_{\text{Khatri-Rao product}}$$

- ► HALS: column-wise version of ALS.
- Gradient update on block $A^{(j)}$

$$A_{\text{New}}^{(j)} = A^{(j)} - \frac{1}{L^{(j)}} \left(A^{(j)} B^{jT} - T_{[j]} \right) B^{j}.$$

Proposed approaches

► Introduce 2 algorithms for computing aCPD that make use of extrapolation in 2 different ways

	Exact Block-Coordinate Descent	Approximate Block-Coordinate Descent
Proposed	Heuristic Extrapolation and Restart (HER)	Inertial Block Proximal Gradient (iBPG)
Convergence	Only empirical	With theoretical analysis

- ► Goal / contribution : show when computing aCPD, extrapolation can
 - enhance empirical convergence speed in difficult cases and
 - help escaping swamps.
- ► This observation is not new, can trace back to work by Harshman in 70s. We provide a fresh view on these issues by using more recent optimization techniques.

Algorithm 1 iBPG for CPD

16: Set k = k + 1. 17: **until** some criteria is satisfied

```
1: Initialization: Set \delta_w = 0.99, \beta = 1.01, t_0 = 1,
        2 sets of initial factor matrices (A_{-1}^{(1)}, \dots, A_{-1}^{(p)}) and
        (A_0^{(1)}, \dots, A_0^{(p)}). Set k = 1.
  2: Set A_{\text{prev}}^{(j)} = A_{-1}^{(j)}, j = 1, \dots, p.
  3: Set A_{\text{cur}}^{(j)} = A_0^{(j)}, j = 1, \dots, p.
  4: repeat
        for j = 1, \ldots, p do
              t_k = \frac{1}{2}(1 + \sqrt{1 + 4t_{k-1}^2}), \hat{w}_{k-1} = \frac{t_{k-1} - 1}{t_k}
             w_{k-1}^{(j)} = \min\left(\hat{w}_{k-1}, \delta_w \sqrt{\frac{L_{k-2}^{(j)}}{L_{k-1}^{(j)}}}\right)
              L_k^{(j)} = \|(B_k^{(j)})^T B_k^{(j)}\|
                      Compute two extrapolation points
10.
                                  \hat{A}^{(j,1)} = A_{\text{cur}}^{(j)} + w_{k-1}^{(j)} \left( A_{\text{cur}}^{(j)} - A_{\text{prev}}^{(j)} \right),
                                  \hat{A}^{(j,2)} = A_{\text{cur}}^{(j)} + \beta w_{k-1}^{(j)} \left( A_{\text{cur}}^{(j)} - A_{\text{prev}}^{(j)} \right)
                      Set A_{\text{prev}}^{(j)} = A_{\text{cur}}^{(j)}.
11.
                      Update A_{\text{cur}}^{(j)} by gradient step:
12:
                      A_{\mathrm{cur}}^{(j)} = \hat{A}^{(j,2)} - \frac{\left(\hat{A}^{(j,1)} \left(B_{k-1}^{(j)}\right)^T - \mathcal{T}_{[j]}\right) B_{k-1}^{(j)}}{L_{*}^{(j)}}.
                 until some criteria is satisfied
13.
                Set A_k^{(j)} = A_{\text{cur}}^{(j)}.
14:
15.
            end for
```

- An Alternating (proximal) grad. descent algo. to solve a general noncvx. nonsmooth block separable composite optimization problem.
 - Use 2 different extrapolation pts to compute gradient and to add inertial force.
 - No restarts.
 - Flexible in the choice of the order in which the blocks are updated.
 - Theory: iBPG for aCPD satisfies the condition for sub-sequential convergence. (Details in: arxiv:1903.01818)

Algorithm 2 herALS for CPD

- 1: Initialization: Choose $\beta_0 \in (0, 1)$, $\eta \geq \gamma \geq \bar{\gamma} \geq 1$, 2 sets of initial factor matrices
 - 2 sets of initial factor matrices $(A_0^{(1)}, \dots, A_0^{(p)})$ and $(Z_0^{(1)}, \dots, Z_0^{(p)})$

Set $\bar{\beta}_0 = 1$ and k = 1.

2: repeat

3: | for j = 1, ..., p do 4: | Update:

5: $\begin{vmatrix} A_k^{(j)} = g\left(T, \left[Z_k^{(l < j)}, Z_{k-1}^{(l > j)}\right]\right) \\ \text{Extrapolate:} \end{vmatrix}$

 $Z_k^{(j)} = A_k^{(j)} + \beta_k \left(A_k^{(j)} - A_{k-1}^{(j)} \right)$

6: **end for**7: Compute $\hat{F}_k = F(A_k^{(p)}; Z_k^{(l \neq p)})$.

if $\hat{F}_k > \hat{F}_{k-1}$ for $k \ge 2$ then Set $Z_k^{(j)} = A_k^{(j)}$ for $j = 1, \dots, p$ Set $\beta_k = \beta_{k-1}$, $\beta_k = \beta_{k-1}/\eta$ else

9: else Set $A_k^{(j)} = Z_k^{(j)}$ for j = 1, ..., p Set $\beta_k = \max\{1, \beta_{k-1}\gamma\}, \beta_k = \max\{\frac{1}{2}\beta_{k-1}, \beta_{k-1}\gamma\}.$ end if

11: | Set k = k + 1. 12: **until** some criteria is satisfied

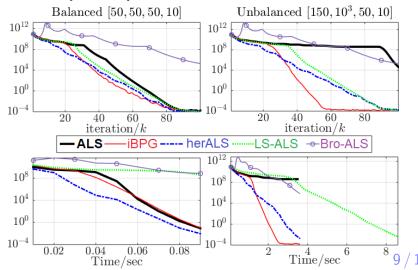
- ► An extrapolation of the factor estimates **between** each block update.
 - ▶ Parameters $(\eta, \gamma, \bar{\gamma})$.
 - ightharpoonup Restarts based on criterion \hat{F} which is cheap to compute.
- ▶ Restart mechanism and β_k update
 - ▶ If \hat{F} decrease : we grow β .
 - ▶ If \hat{F} increase : we decrease β .
 - Similar update on $\bar{\beta}$.
- Not limited to ALS, HER can accelerate any BCD algo.
- ▶ No additional computational cost : cost of one iteration of herALS is the same as one iteration of ALS, because of the use of \hat{F} .
- ▶ No intensive parameter tuning is needed on $(\eta, \gamma, \bar{\gamma})$.
- ► On Nonnegative CPD: arXiv:2001.04321

Exeriments setup

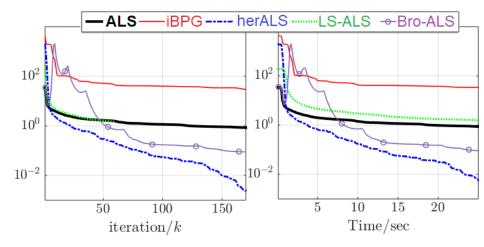
- ► Algorithms to compare : iBPG and herALS, and
 - ► ALS : Original un-accelerated ALS
 - Bro-ALS: accelerated ALS using Bro's acceleration, which uses a different heuristic approach to perform extrapolation.
 - ► LS-ALS : accelerated ALS where extrapolation sequence is computed by line search.
- ▶ Data sets : order 3 tensors, synthetic and real data from fluorescence spectroscopy and remote sensing.
- \blacktriangleright Data preprocessing : no preprocessing other than replacing NaN as 0.
- ► All experiments are run over 20 random initializations.
- ▶ Plotting : median of cost value over these 20 trials.

Synthetic data sets $T = \sum_{q=1}^r a_q^{(1)} \otimes a_q^{(2)} \otimes a_q^{(3)} + \sigma N$

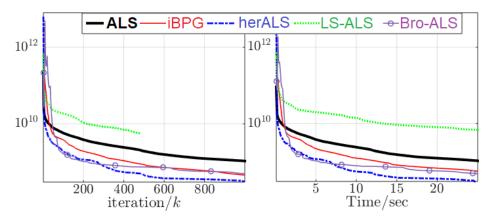
- lacktriangleright N : zero mean unitary variance Gaussian noise
- ▶ Condition number of $A^{(j)}$ adjusted to 100 (ill-condition)
- ▶ Notation: [I, J, K, r] is the tensor size and the factorization rank

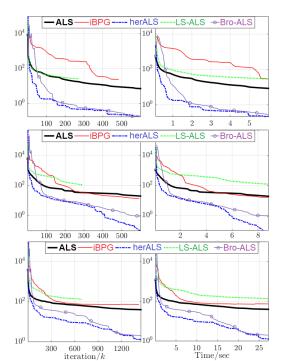


Wine data [44, 2700, 200, 15]



Indian Pines data [145, 145, 200, 16]





► Blood data [289, 301, 41, r] $r \in \{3, 6, 10\}$ (top,middle,bottom)

On overall experiment results

- On synthetic data with ill-conditioned tensors, iBPG outperforms workhorse algo. ALS, and helps escaping swamps.
- On real data, herALS outperforms all tested methods while iBPG shows mitigated results.

Last page - summary and perspective

- ► Two extrapolation alternating algo. for solving aCPD : iBPG, HER-BCD.
- ► This work provides further practical evidence that extrapolation helps escaping swamps when computing aCPD.
- On constrained CPD, HER approach works even better for nonnegative CPD, see arXiv:2001.04321.
- ▶ Open problem : theoretical convergence analysis of HER.

Paper preprint: https://bit.ly/3aRn1yw Slide: angms.science End of presentation