

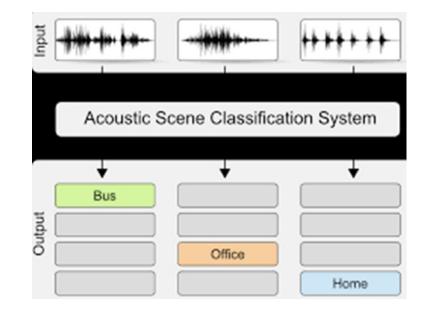
Acoustic Scene Classification for Mismatched Recording Devices using Heated-up Softmax and Spectrum Correction

www.spsc.tugraz.at

May 6th,2020

Outline

2


- Acoustic Scene Classification (ASC) Introduction
- ASC Applications
- Data
- ASC System
- Experimental Results
- Conclusion

3

Acoustic Scene Classification (ASC):

- A multi-class classification
- Classifying the recoded environment sounds as specific acoustic scenes.

http://dcase.community/challenge2016/task-acoustic-scene-classification

Truc Nguyen

4

Context-aware wearable devices:

- Hearing aids
- Headphones
- Smartphone
- Smart wear
- Smart home applications

Data

5

DCASE 2019 Database:

- Acoustic scenes for tasks (10 classes):
 - **Outdoor:** Airport, Street pedestrian, Public square, Street traffic, Park
 - Indoor: Shopping mall, Metro station
 - Vehicle: Tram, Bus, Metro
- Recording locations: 12 cities
- Recording devices:

http://dcase.community/challenge2019/task-acoustic-scene-classification

Truc Nguyen

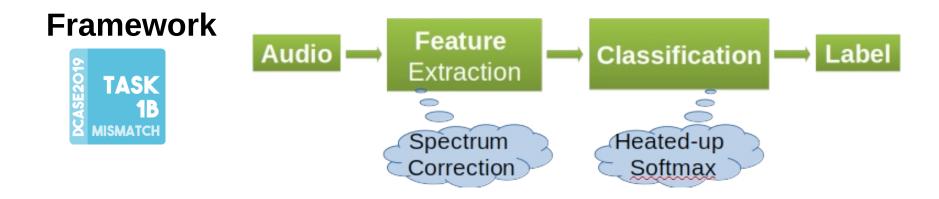
Data

6

DCASE 2019 Database:

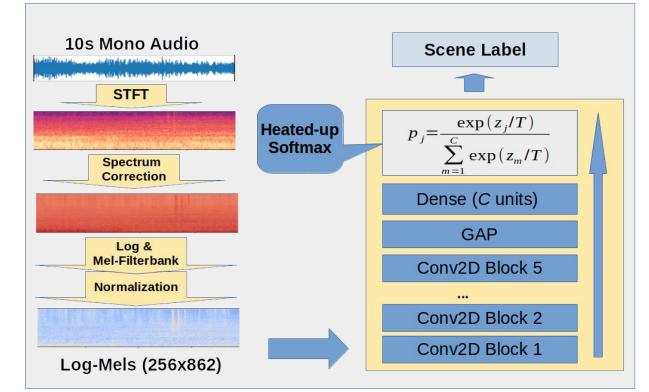
- Development set:
 - Device A: 40 hours (14400 segments, resampled and single-channel)
 - Device B: 3 hours (1080 segments)
 - Device C: 3 hours (1080 segments)
- Training set: 10265 segments (10s) (540 segments for each Device B and C)
- Test set: 5265 segment (10s) + 1030 segments recorded in a different city
- Evaluation set: ~30 hours (Devices A, B, C + Device D)

Acoustic Scene Classification with mismatched recording devices


http://dcase.community/challenge2019/task-acoustic-scene-classification

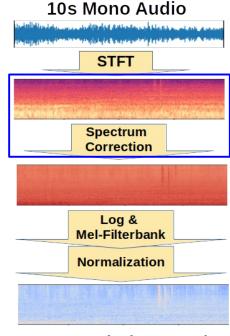
Truc Nguyen

Challenges:


- Differences in frequency responses of recording devices
- A shift in data distribution between training set and test set

Proposed System

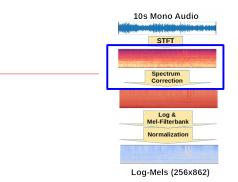
- Pre-processing
 - Sampling rate 44.1kHz
 - Hann window
 - Window size: 2048
 - Hop size: 512
 - STFT with 862
 - temporal frames


8

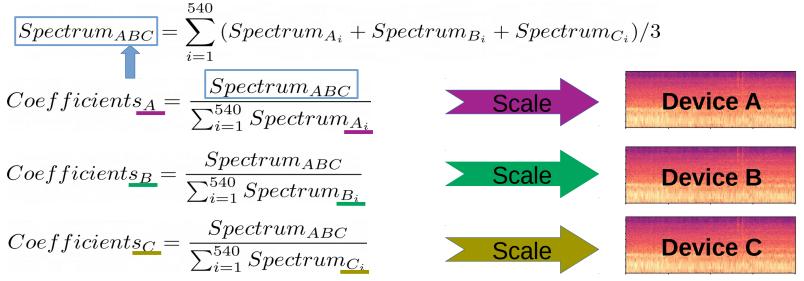
9

Spectrum Correction

- Deal with varying frequency response
- of the recording devices A, B and C
- Scaling Coefficients
- Training set:
 - Reference recordings: 540 segments
 - of the same acoustic scenes for each
 - device A, B and C
 - Spectrum: average of a spectrogram
 - over temporal frames



Log-Mels (256x862)



Spectrum Correction

- Deal with varying frequency response of the
- recording devices A, B and C
- Training set:
 - Reference recordings: 540 segments of the
 - same acoustic scenes for each device A, B and C
 - Spectrum: average of a spectrogram over temporal frames

Scaling Coefficients using Reference Devices A, B and C (Ref.ABC)

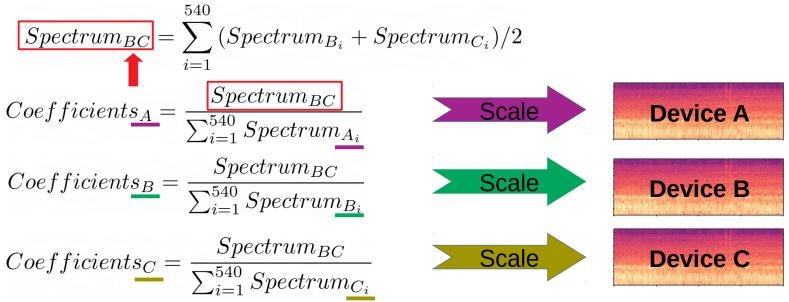
Truc Nguyen

10s Mono Audio

Spectrum Correction

Log & Mel-Filterbank

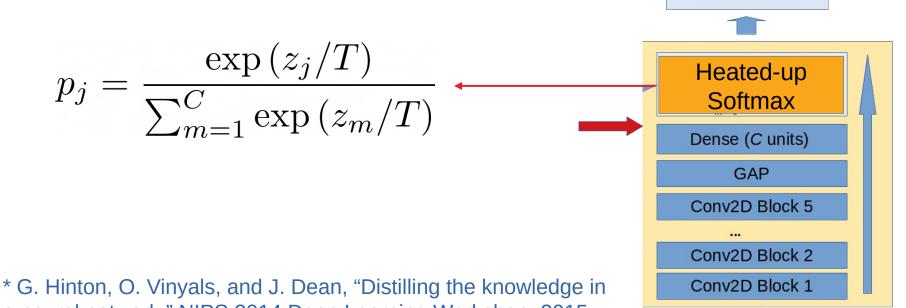
Normalization


Log-Mels (256x862)

11 ASC System

Spectrum Correction

- Deal with varying frequency response of the
- recording devices A, B and C
- Training set:
 - Reference recordings: 540 segments of the
 - same acoustic scenes for each device A, B and C
 - Spectrum: average of a spectrogram over temporal frames



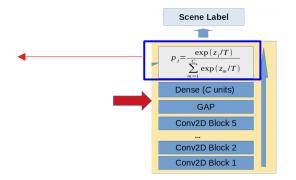
Truc Nguyen

Heated-up Softmax

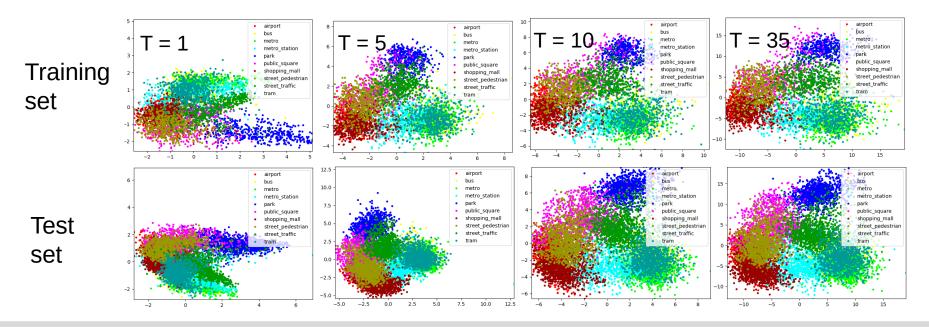
- Temperature scaling*: calibrating predictions
- A higher value for **T** produces
- a **softer probability distribution** over classes
- Deal with the **shifted data distribution**

a neural network," NIPS 2014 Deep Learning Workshop, 2015.

Truc Nguyen


ICASSP 2020

Scene Label



Heated-up Softmax

- Temperature scaling : calibrating predictions
- A higher value for **T** produces
- a softer probability distribution over classes
- Deal with the shifted data distribution

Visualization of the GAP outputs by PCA

Truc Nguyen

Convolutional Neural Network

- The best model of DCASE
- Challenge 2019 Task 1B
- A modest number of 70K parameters

Layer	Output	Kernel size	Stride
Input layer	256x862x1	-	-
Conv2D+ReLU+BN	254x862x16	3x3	1
Conv2D+ReLU+BN	126x429x32	3x3	2
Conv2D+ReLU+BN	124x427x32	3x3	1
Conv2D+ReLU+BN	61x213x64	3x3	2
Conv2D+ReLU+BN	59x211x64	3x3	1
GAP	64	-	-
Output layer	10	-	-

Convolutional Neural Network

- The best model of DCASE
- Challenge 2019 Task 1B
- A modest number of 70K parameters

Layer	Output	Kernel size	Stride
Input layer	256x862x1	-	-
Conv2D+ReLU+BN	254x862x16	3x3	1
Conv2D+ReLU+BN	126x429x32	3x3	2
Conv2D+ReLU+BN	124x427x32	3x3	1
Conv2D+ReLU+BN	61x213x64	3x3	2
Conv2D+ReLU+BN	59x211x64	3x3	1
GAP	64	-	-
Output layer	10	-	-

Focal Loss

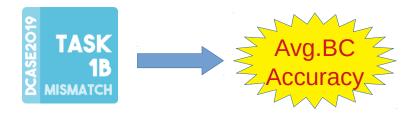
- Suitable for the shifted data distribution
- Deal with difficult samples

Convolutional Neural Network

- The best model of DCASE
- Challenge 2019 Task 1B
- A modest number of 70K parameters

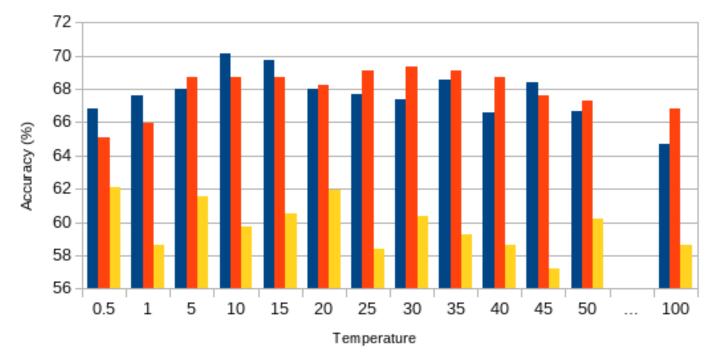
Layer	Output Kernel siz		ze Stride	
Input layer	256x862x1	-	-	
Conv2D+ReLU+BN	254x862x16	3x3	1	
Conv2D+ReLU+BN	126x429x32	3x3	2	
Conv2D+ReLU+BN	124x427x32	3x3	1	
Conv2D+ReLU+BN	61x213x64	3x3	2	
Conv2D+ReLU+BN	59x211x64	3x3	1	
GAP	64	-	-	
Output layer	10	-	-	

Focal Loss

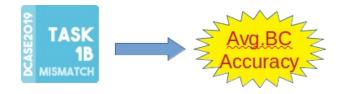

- Suitable for the shifted data distribution
- Deal with difficult samples

Mixup Data Augmentation

- Suitable for the ASC dataset
- Enhance performance for ASC



17 Experimental Results


Observed spectrum correction and T values

Ref. ABC Ref. BC NoCorrection

Truc Nguyen

Accuracy of the proposed system
on test set of DCASE 2019 task 1B

System	Dev.A	Dev.B	Dev.C	Avg.BC	Param.	
Baseline [21]	61.9	39.6	43.1	41.4	-	
	± 0.8	(± 2.7)	± 2.2	± 1.7	-	
Base_model_Kosmider_SRPOL [2]	72	-	-	70	70,954	
McDonnell_USA_task1b_3 [22]	-	-	-	66.3	6M	
Primus_CPJKU_task1b_4 [11]	-	-	-	65.1	26M	
LamPham_KentGroup_task1b_1 [8]	-	55.3	62.3	58.8	6M	
Song_HIT_task1b_3 [23]	-	-	-	70.3	68M	
Jiang_UESTC_task1b_2 [24]		-		64.2	1M	
Base_model_Ref.ABC_T10	73.4	66.5	73.7	70.1	70,954	
Base_model_Ref.ABC_T15	72.3	66.9	72.6	69.7	70,954	
Base_model_Ref.BC_T30	72.2	65.9	72.8	69.4	70,954	Spectrum Correction Base CNN model
Base_model_NoCorrection_T1	71.6	58.0	59.3	58.6	70,954	
Base_model_NoCorrection_T20	72.8	60.9	63.0	62.0	70,954	

Truc Nguyen

Conclusion

- Propose temperature scaling of the softmax activation
- function, namely heated-up softmax for ASC.
- Observe different versions of **spectrum correction**.
- Our system outperforms many state-of-the-art models of the DCASE 2019 challenge task 1B:
 - At **70.1% accuracy** and about **70 thousand parameters**.
 - At 28.7% of accuracy higher than the baseline model of the DCASE 2019 challenge.

Thank you for your attention!