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Machine Learning on Graphs

I Graphs are models of signal structure ⇒ Network data ⇒ Leverage in learning from network data

Robot coordination Smart grids Remote sensing Traffic coordination

I Scalability ⇒ Process data from arbitrarily large networks

I Exploit data structure, local information ⇒ Fast training and moderate dataset size

I Distributed computations ⇒ Efficient implementation
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Machine Learning on Graphs

I Graph Neural Networks

⇒ Graph Signal Processing ⇒ Mathematical framework

⇒ Graph convolutions ⇒ Local, distributed ⇒ Generalize time convolutions

I Equivariance and stability ⇒ Transferability and scalability

⇒ Permutation equivariance ⇒ Exploit structure

⇒ Stability to changes in the underlying network

Stability to Perturbations

A small change in the graph support causes a small change in the output of the GNN
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Graph Convolutions

I Graph convolution ⇒ Linear combination of shifted versions of the signal x

x ∗ h =

K−1∑
k=0

hk xn−k

I Notion of shift S ⇒ Matrix description of graph (adjacency, Laplacian)
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Graph Convolutions

I Graph convolution ⇒ Linear combination of shifted versions of the signal

x ∗S h =

K−1∑
k=0

hk Skx = H(S)x

I Notion of shift S ⇒ Matrix description of graph (adjacency, Laplacian)

I Linear combination of neighboring signal ⇒ Local operation
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Graph Neural Networks

I Cascade of L layers

⇒ Graph convolutions with filters H = {h`}
⇒ Pointwise nonlinearity (activation functions)

I The GNN Φ(x; S,H) depends on the filters H
⇒ Learn filter taps H from training data

⇒ Also depends on the graph S

I Nonlinear mapping Φ(x; S,H)

⇒ Exploit underlying graph structure S

⇒ Local information

⇒ Distributed implementation
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Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP, 2019
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Graph Neural Networks: Why?

I Time convolutions are intuitive. Graph convolutions not so much.

⇒ Local information, efficient implementation (distributed)

I CNNs are good at machine learning ⇒ Translation equivariant, stable [Mallat ’12]

I Permutation equivariance ⇒ Exploit internal symmetries of the graph

I Stability to graph perturbations ⇒ Similar graphs yield similar outputs

I Permutation Equivariance + Stablity ⇒ Scalability and transferability
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Permutation Equivariance

I Consider the graph convolution operator H(S)x =
∞∑
k=0

hk Sk x

I Depends on filter parameters h = {hk}∞k=0 and shift operator S; applied to the input signal x

Theorem
Graph convolutions are equivariant to permutations. For graphs with permuted shift
operators Ŝ = PTSP and permuted graph signals x̂ = PTx it holds

H(Ŝ)x̂ = PTH(S)x

Proof ⇒ H(Ŝ)x̂ =
∞∑
k=0

hk Ŝk x̂ =
∞∑
k=0

hk (PTSP)kPTx = PT

( ∞∑
k=0

hk Skx

)
= PTH(S)x

I GNN ⇒ Graph convolution + Pointwise nonlinearity ⇒ Pointwise does not mix node values

⇒ GNN retains permutation equivariance ⇒ Φ(x̂; Ŝ,H) = PTΦ(x; S,H)

I Signal processing with graph neural networks is independent of labeling
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I Signal processing with graph neural networks is independent of labeling

fgama@seas.upenn.edu Stability of Graph Neural Networks to Relative Perturbations 10/25



Permutation Equivariance

I Consider the graph convolution operator H(S)x =
∞∑
k=0

hk Sk x

I Depends on filter parameters h = {hk}∞k=0 and shift operator S; applied to the input signal x

Theorem
Graph convolutions are equivariant to permutations. For graphs with permuted shift
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Equivariance to Permutations is More Valuable than Apparent

I Invariance to node relabelings allows GNNs to exploit internal symmetries of graph signals

I Although different, signals on (a) and (b) are permutations of one other

⇒ Permutation equivariance means that the GNN can learn to classify (b) from seeing (a)

1 2

3

45

6 7 10

8 9

12 11

(a)

1 2

3

45

6 7 10

8 9

12 11

(b)

I Permutation Equivariance is not a good idea in all problems ⇒ Edge-Variant GNNs

Isufi, Gama, Ribeiro, “EdgeNets: Edge Varying Graph Neural Networks”, arXiv:2001.07620, 2020
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Equivariance to Permutations is a Property of Graph Filters

I Permutation equivariance is a property of graph convolutions inherited to GNNs

⇒ Exploits data structure (internal symmetries of the graph)

I Why choose GNNs over graph convolutions?

⇒ Q1: What is good about pointwise nonlinearities?

⇒ Q2: What is wrong with linear graph convolutions?

I A2: They can be unstable to perturbations of the graph if we push their discriminative power

I A1: They make GNNs stable to perturbations while retaining discriminability

I These questions can be answered with an analysis in the spectral domain
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Graph Convolutions in the Frequency Domain

I Graph convolution is a polynomial on the shift operator ⇒ y =
∞∑
k=0

hkSkx

I Decompose operator as S = VΛVH to write the spectral representation of the graph convolution

VHy = VH
∞∑
k=0

hk(VΛVH)k x ⇒ ỹ =
∞∑
k=0

hkΛk x̃

I where we have used the graph Fourier transform (GFT) definitions x̃ = VHx and ỹ = VHy

I Graph convolution is a pointwise operation in the spectral domain

ỹi = h̃(λi ) · x̃i

⇒ Determined by the (graph) frequency response ⇒
∞∑
k=0

hkλ
k
i = h̃(λi )
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ỹi = h̃(λi ) · x̃i

⇒ Determined by the (graph) frequency response ⇒
∞∑
k=0

hkλ
k
i = h̃(λi )
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Graph Frequency Response

I We can reinterpret the frequency response as a polynomial on continuous λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

λ1 λi λN

I Frequency response is the same no matter the graph ⇒ It’s instantiated on its particular spectrum
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Restricting the Class of Allowable Filters

I Let h(λ) be the frequency response of filter H. We say H is integral Lipschitz if |λh′(λ)| ≤ C

λ1 = 0 λ2 λ3 λ4

I Integral Lipschitz filters have to be wide for large λ ⇒ They cannot discriminate

I But they can be thin for low λ ⇒ They can discriminate. Arbitrarily discriminate
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Stability of Graph Neural Networks with Integral Lipschitz Filters

I Relative distance between S and Ŝ ⇒ Smallest matrix E that maps S into a permutation of Ŝ

E =
{

E : PTŜP = S + ETS + SE
}
⇒ d(S, Ŝ) = min

E∈E
‖E‖ ≤

‖Ŝ− S‖
‖S‖

Theorem
Consider a GNN with L layers having integral Lipschitz filter H` with constant C . Graphs S and Ŝ
satisfy d(S, Ŝ) ≤ ε/2. The matrix E that achieves minimum distance satisfies ‖E/‖E‖ − I‖ ≤ ε. It
holds that for all signals x

min
P∈P
‖Φ(x; Ŝ,H)− PTΦ(x; S,H)‖ ≤ CL ε + O(ε2)

I GNNs can be made stable to graph perturbations if filters are integral Lipschitz
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Proof of Stability Theorem

I The GNN stability theorem is elementary to prove for an edge dilation ⇒ Ŝ = (1 + ε)S

I An edge dilation just produces a spectrum dilation ⇒ λ̂i = (1 + ε)λi , E = (ε/2)I

λ1 λi λN

I Small deformations may result in large filter variations for large λ if filter is not integral Lipschitz
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Discriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?

I Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

λN−1 λN

I Limits their value in machine learning problems where features at large eigenvalues are important

fgama@seas.upenn.edu Stability of Graph Neural Networks to Relative Perturbations 20/25



Discriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?

I Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

λN−1 λN

I Limits their value in machine learning problems where features at large eigenvalues are important

fgama@seas.upenn.edu Stability of Graph Neural Networks to Relative Perturbations 20/25



Discriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?

I Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

λ̂N−1 λ̂N

I Limits their value in machine learning problems where features at large eigenvalues are important

fgama@seas.upenn.edu Stability of Graph Neural Networks to Relative Perturbations 20/25



Discriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?

I Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

λ̂N−1
λN−1 λ̂N

λN

I Limits their value in machine learning problems where features at large eigenvalues are important

fgama@seas.upenn.edu Stability of Graph Neural Networks to Relative Perturbations 20/25



Nonlinearities Create Low Frequency Components

I Q1: What is good about pointwise nonlinearities?

I Preserve permutation equivariance while generating low graph frequency components
⇒ Which we can discriminate with stable filters

λ̂1
λ1 λ̂i

λi λ̂N
λN

Spectrum of rectified
graph signal

xrelu = max(x, 0)

I The nonlinearity demodulates. It creates low frequency content that is stable
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Example: Movie Recommendation Systems

I Movie recommendation problem ⇒ Each node is a movie, each edge is the rating similarity

I Rating similarities estimated from training set ⇒ Changing training set changes graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ratio of Training Samples

10−1

100

101

‖Φ
(S
,x

)
−

Φ
(Ŝ
,x

)‖

Linear

Linear (bound)

GNN

GNN (bound)

GNN (IL)

GNN (IL) (bound)

I GNN trained with integral Lipschitz filters is more stable to graph estimation errors

Gama, Isufi, Leus, Ribeiro, “Graphs, Convolutions, and Neural Networks”, arXiv:2003.03777, 2020

Gama, Tolstaya, Ribeiro, “Graph Neural Networks for Decentralized Controllers”, arXiv:2003.10280, 2020
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Machine Learning on Graphs

I Successful learning on graphs ⇒ Scalability, exploit data structure, distributed implementation

I Graph neural networks (GNNs) ⇒ Graph convolutions followed by pointwise nonlinearities

I GNNs are permutation equivariant and stable to changes in the graph ⇒ Scale, transfer

I Graph convolutions are either stable or selective, but cannot be both

I Nonlinearities ⇒ GNNs are both stable and selective information processing architectures

I Movie recommendation ⇒ Stable to estimation errors in the rating similarity

Journal version:

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, arXiv:1905.04497, 2020.

Thank You!
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