

# Stability of Graph Neural Networks to Relative Perturbations

Fernando Gama, Joan Bruna, and Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania

### Supported by NSF CCF 1717120, ARO W911NF1710438, ARL DCIST CRA W911NF-17-2-0181, ISTC-WAS and Intel DevCloud

May 8, 2020 45th Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2020)



### ► Graphs are models of signal structure ⇒ Network data ⇒ Leverage in learning from network data



Robot coordination



Smart grids



Remote sensing



Traffic coordination



### ► Graphs are models of signal structure ⇒ Network data ⇒ Leverage in learning from network data



Robot coordination



Smart grids



Remote sensing



Traffic coordination

- ► Scalability ⇒ Process data from arbitrarily large networks
- **Exploit data structure**, local information  $\Rightarrow$  Fast training and moderate dataset size
- Distributed computations ⇒ Efficient implementation



- $\Rightarrow$  Graph Signal Processing  $\Rightarrow$  Mathematical framework
- $\Rightarrow$  Graph convolutions  $\Rightarrow$  Local, distributed  $\Rightarrow$  Generalize time convolutions



- $\Rightarrow$  Graph Signal Processing  $\Rightarrow$  Mathematical framework
- $\Rightarrow$  Graph convolutions  $\Rightarrow$  Local, distributed  $\Rightarrow$  Generalize time convolutions
- **Equivariance and stability**  $\Rightarrow$  Transferability and scalability
  - $\Rightarrow$  Permutation equivariance  $\Rightarrow$  Exploit structure
  - $\Rightarrow$  Stability to changes in the underlying network



- $\Rightarrow$  Graph Signal Processing  $\Rightarrow$  Mathematical framework
- $\Rightarrow$  Graph convolutions  $\Rightarrow$  Local, distributed  $\Rightarrow$  Generalize time convolutions
- ► Equivariance and stability ⇒ Transferability and scalability
  - $\Rightarrow$  Permutation equivariance  $\Rightarrow$  Exploit structure
  - $\Rightarrow$  Stability to changes in the underlying network

### Stability to Perturbations

A small change in the graph support causes a small change in the output of the GNN



Permutation Equivariance

Stability to Perturbations

Insights and Discussion

Illustrative Example: Recommendation Systems

### Conclusions



Permutation Equivariance

Stability to Perturbations

Insights and Discussion

Illustrative Example: Recommendation Systems

#### Conclusions



• Graph convolution  $\Rightarrow$  Linear combination of shifted versions of the signal x

$$\mathbf{x} \ast \mathbf{h} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{x}_{n-k}$$





• Graph convolution  $\Rightarrow$  Linear combination of shifted versions of the signal x

$$\mathbf{x} \ast \mathbf{h} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{x}_{n-k}$$

▶ Notion of shift **S** ⇒ Matrix description of graph (adjacency, Laplacian)









$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift  $S \Rightarrow$  Matrix description of graph  $\Rightarrow$  Sx shifts the signal x







• Graph convolution  $\Rightarrow$  Linear combination of shifted versions of the signal x

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift  $S \Rightarrow$  Matrix description of graph  $\Rightarrow Sx$  shifts the signal x







• Graph convolution  $\Rightarrow$  Linear combination of shifted versions of the signal x

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift  $S \Rightarrow$  Matrix description of graph  $\Rightarrow Sx$  shifts the signal x





• Graph convolution  $\Rightarrow$  Linear combination of shifted versions of the signal x

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} \mathbf{h}_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift  $S \Rightarrow$  Matrix description of graph  $\Rightarrow$  Sx shifts the signal x





• Graph convolution  $\Rightarrow$  Linear combination of shifted versions of the signal x

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x}$$

▶ Notion of shift  $S \Rightarrow$  Matrix description of graph  $\Rightarrow$  Sx shifts the signal x





• Graph convolution  $\Rightarrow$  Linear combination of shifted versions of the signal

$$\mathbf{x} *_{\mathbf{S}} \mathbf{h} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x} = \mathbf{H}(\mathbf{S})\mathbf{x}$$

- ▶ Notion of shift  $S \Rightarrow$  Matrix description of graph (adjacency, Laplacian)
- ► Linear combination of neighboring signal ⇒ Local operation





- Cascade of L layers
  - $\Rightarrow$  Graph convolutions with filters  $\mathcal{H} = \{\boldsymbol{h}_\ell\}$
  - $\Rightarrow$  Pointwise nonlinearity (activation functions)





- Cascade of L layers
  - $\Rightarrow$  Graph convolutions with filters  $\mathcal{H} = \{\boldsymbol{h}_\ell\}$
  - $\Rightarrow$  Pointwise nonlinearity (activation functions)





- Cascade of L layers
  - $\Rightarrow$  Graph convolutions with filters  $\mathcal{H} = \{\boldsymbol{h}_\ell\}$
  - $\Rightarrow$  Pointwise nonlinearity (activation functions)
- ► The GNN  $\Phi(x; \mathbf{S}, \mathcal{H})$  depends on the filters  $\mathcal{H}$ 
  - $\Rightarrow$  Learn filter taps  ${\cal H}$  from training data
  - $\Rightarrow$  Also depends on the graph  ${\bf S}$



- Cascade of L layers
  - $\Rightarrow$  Graph convolutions with filters  $\mathcal{H} = \{\boldsymbol{h}_\ell\}$
  - $\Rightarrow$  Pointwise nonlinearity (activation functions)
- ► The GNN  $\Phi(x; S, H)$  depends on the filters H
  - $\Rightarrow$  Learn filter taps  ${\cal H}$  from training data
  - $\Rightarrow$  Also depends on the graph  ${\bf S}$
- Nonlinear mapping  $\Phi(x; S, H)$ 
  - $\Rightarrow$  Exploit underlying graph structure S
  - $\Rightarrow$  Local information
  - $\Rightarrow$  **Distributed** implementation





### Permutation Equivariance

Stability to Perturbations

Insights and Discussion

Illustrative Example: Recommendation Systems

#### Conclusions



- ► Time convolutions are intuitive. Graph convolutions not so much.
  ⇒ Local information, efficient implementation (distributed)
- ► CNNs are good at machine learning ⇒ Translation equivariant, stable [Mallat '12]
- ▶ Permutation equivariance ⇒ Exploit internal symmetries of the graph
- **Stability** to graph perturbations  $\Rightarrow$  Similar graphs yield similar outputs
- ▶ Permutation Equivariance + Stablity ⇒ Scalability and transferability



• Consider the graph convolution operator  $H(S)x = \sum_{k=0}^{\infty} h_k S^k x$ 

**b** Depends on filter parameters  $\mathbf{h} = \{h_k\}_{k=0}^{\infty}$  and shift operator **S**; applied to the input signal **x** 



• Consider the graph convolution operator  $H(S)x = \sum_{k=0}^{\infty} h_k S^k x$ 

• Depends on filter parameters  $\mathbf{h} = \{h_k\}_{k=0}^{\infty}$  and shift operator **S**; applied to the input signal **x** 

#### Theorem

Graph convolutions are equivariant to permutations. For graphs with permuted shift operators  $\hat{S} = P^T SP$  and permuted graph signals  $\hat{x} = P^T x$  it holds

 $\mathbf{H}(\hat{\mathbf{S}})\hat{\mathbf{x}} = \mathbf{P}^{\mathsf{T}}\mathbf{H}(\mathbf{S})\mathbf{x}$ 

$$\mathbf{Proof} \Rightarrow \mathbf{H}(\hat{\mathbf{S}})\hat{\mathbf{x}} = \sum_{k=0}^{\infty} h_k \, \hat{\mathbf{S}}^k \hat{\mathbf{x}} = \sum_{k=0}^{\infty} h_k \, (\mathbf{P}^{\mathsf{T}} \mathbf{S} \mathbf{P})^k \mathbf{P}^{\mathsf{T}} \mathbf{x} = \mathbf{P}^{\mathsf{T}} \left( \sum_{k=0}^{\infty} h_k \, \mathbf{S}^k \mathbf{x} \right) = \mathbf{P}^{\mathsf{T}} \mathbf{H}(\mathbf{S}) \mathbf{x}$$



• Consider the graph convolution operator  $H(S)x = \sum_{k=0}^{\infty} h_k S^k x$ 

• Depends on filter parameters  $\mathbf{h} = \{h_k\}_{k=0}^{\infty}$  and shift operator **S**; applied to the input signal **x** 

#### Theorem

Graph convolutions are equivariant to permutations. For graphs with permuted shift operators  $\hat{S} = P^T SP$  and permuted graph signals  $\hat{x} = P^T x$  it holds

 $\mathbf{H}(\hat{\mathbf{S}})\hat{\mathbf{x}} = \mathbf{P}^{\mathsf{T}}\mathbf{H}(\mathbf{S})\mathbf{x}$ 

$$\mathbf{Proof} \Rightarrow \mathbf{H}(\hat{\mathbf{S}})\hat{\mathbf{x}} = \sum_{k=0}^{\infty} h_k \, \hat{\mathbf{S}}^k \hat{\mathbf{x}} = \sum_{k=0}^{\infty} h_k \, (\mathbf{P}^{\mathsf{T}} \mathbf{S} \mathbf{P})^k \mathbf{P}^{\mathsf{T}} \mathbf{x} = \mathbf{P}^{\mathsf{T}} \left( \sum_{k=0}^{\infty} h_k \, \mathbf{S}^k \mathbf{x} \right) = \mathbf{P}^{\mathsf{T}} \mathbf{H}(\mathbf{S}) \mathbf{x}$$

► GNN  $\Rightarrow$  Graph convolution + Pointwise nonlinearity  $\Rightarrow$  Pointwise does not mix node values  $\Rightarrow$  GNN retains permutation equivariance  $\Rightarrow \Phi(\hat{\mathbf{x}}; \hat{\mathbf{S}}, \mathcal{H}) = \mathbf{P}^{\mathsf{T}} \Phi(\mathbf{x}; \mathbf{S}, \mathcal{H})$ 

Signal processing with graph neural networks is independent of labeling



- Invariance to node relabelings allows GNNs to exploit internal symmetries of graph signals
- Although different, signals on (a) and (b) are permutations of one other
  - $\Rightarrow$  Permutation equivariance means that the GNN can learn to classify (b) from seeing (a)



 $\blacktriangleright$  Permutation Equivariance is not a good idea in all problems  $\ \Rightarrow$  Edge-Variant GNNs

Isufi, Gama, Ribeiro, "EdgeNets: Edge Varying Graph Neural Networks", arXiv:2001.07620, 2020



Permutation Equivariance

### Stability to Perturbations

Insights and Discussion

Illustrative Example: Recommendation Systems

### Conclusions



- Permutation equivariance is a property of graph convolutions inherited to GNNs
  - $\Rightarrow$  Exploits data structure (internal symmetries of the graph)
- Why choose GNNs over graph convolutions?
  - $\Rightarrow$  Q1: What is good about pointwise nonlinearities?
  - $\Rightarrow$  Q2: What is wrong with linear graph convolutions?



- Permutation equivariance is a property of graph convolutions inherited to GNNs
  - $\Rightarrow$  Exploits data structure (internal symmetries of the graph)
- Why choose GNNs over graph convolutions?
  - $\Rightarrow$  Q1: What is good about pointwise nonlinearities?
  - $\Rightarrow$  Q2: What is wrong with linear graph convolutions?
- ► A2: They can be unstable to perturbations of the graph if we push their discriminative power
- ► A1: They make GNNs stable to perturbations while retaining discriminability



- Permutation equivariance is a property of graph convolutions inherited to GNNs
  - $\Rightarrow$  Exploits data structure (internal symmetries of the graph)
- Why choose GNNs over graph convolutions?
  - $\Rightarrow$  Q1: What is good about pointwise nonlinearities?
  - $\Rightarrow$  Q2: What is wrong with linear graph convolutions?
- ► A2: They can be unstable to perturbations of the graph if we push their discriminative power
- ► A1: They make GNNs stable to perturbations while retaining discriminability
- ► These questions can be answered with an analysis in the **spectral domain**



• Graph convolution is a polynomial on the shift operator 
$$\Rightarrow \mathbf{y} = \sum_{k=0}^{\infty} h_k \mathbf{S}^k \mathbf{x}$$



- Graph convolution is a polynomial on the shift operator  $\Rightarrow \mathbf{y} = \sum_{k=0}^{\infty} h_k \mathbf{S}^k \mathbf{x}$
- Decompose operator as  $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{H}}$  to write the spectral representation of the graph convolution

$$\mathbf{V}^{\mathsf{H}}\mathbf{y} = \mathbf{V}^{\mathsf{H}}\sum_{k=0}^{\infty}h_{k}(\mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{H}})^{k}\mathbf{x} \qquad \Rightarrow \qquad \tilde{\mathbf{y}} = \sum_{k=0}^{\infty}h_{k}\mathbf{\Lambda}^{k}\tilde{\mathbf{x}}$$

**>** where we have used the graph Fourier transform (GFT) definitions  $\tilde{\mathbf{x}} = \mathbf{V}^{H}\mathbf{x}$  and  $\tilde{\mathbf{y}} = \mathbf{V}^{H}\mathbf{y}$ 



- Graph convolution is a polynomial on the shift operator  $\Rightarrow \mathbf{y} = \sum_{k=0}^{\infty} h_k \mathbf{S}^k \mathbf{x}$
- Decompose operator as  $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{H}}$  to write the spectral representation of the graph convolution

$$\mathbf{V}^{\mathsf{H}}\mathbf{y} = \mathbf{V}^{\mathsf{H}}\sum_{k=0}^{\infty}h_{k}(\mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\mathsf{H}})^{k}\mathbf{x} \qquad \Rightarrow \qquad \tilde{\mathbf{y}} = \sum_{k=0}^{\infty}h_{k}\mathbf{\Lambda}^{k}\tilde{\mathbf{x}}$$

- **>** where we have used the graph Fourier transform (GFT) definitions  $\tilde{\mathbf{x}} = \mathbf{V}^{H}\mathbf{x}$  and  $\tilde{\mathbf{y}} = \mathbf{V}^{H}\mathbf{y}$
- Graph convolution is a pointwise operation in the spectral domain

$$\tilde{y}_i = \tilde{h}(\lambda_i) \cdot \tilde{x}_i$$

$$\Rightarrow$$
 Determined by the (graph) frequency response  $\Rightarrow \sum_{k=0}^{\infty} h_k \lambda_i^k = \tilde{h}(\lambda_i)$ 



• We can reinterpret the frequency response as a polynomial on continuous  $\lambda \Rightarrow \tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$ 



Frequency response is the same no matter the graph  $\Rightarrow$  It's instantiated on its particular spectrum



• We can reinterpret the frequency response as a polynomial on continuous  $\lambda \Rightarrow \tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$ 



Frequency response is the same no matter the graph  $\Rightarrow$  It's instantiated on its particular spectrum



• We can reinterpret the frequency response as a polynomial on continuous  $\lambda \Rightarrow \tilde{h}(\lambda) = \sum_{k=0}^{\infty} h_k \lambda^k$ 



Frequency response is the same no matter the graph  $\Rightarrow$  It's instantiated on its particular spectrum



• Let  $h(\lambda)$  be the frequency response of filter **H**. We say **H** is integral Lipschitz if  $|\lambda h'(\lambda)| \leq C$ 



▶ Integral Lipschitz filters have to be wide for large  $\lambda \Rightarrow$  They cannot discriminate

• But they can be thin for low  $\lambda \Rightarrow$  They can discriminate. Arbitrarily discriminate



▶ Relative distance between S and  $\hat{S} \Rightarrow$  Smallest matrix E that maps S into a permutation of  $\hat{S}$ 

$$\mathcal{E} = \left\{ \mathbf{E} : \mathbf{P}^{\mathsf{T}} \hat{\mathbf{S}} \mathbf{P} = \mathbf{S} + \mathbf{E}^{\mathsf{T}} \mathbf{S} + \mathbf{S} \mathbf{E} \right\} \quad \Rightarrow \quad d(\mathbf{S}, \hat{\mathbf{S}}) = \min_{\mathbf{E} \in \mathcal{E}} \|\mathbf{E}\| \le \frac{\|\hat{\mathbf{S}} - \mathbf{S}\|}{\|\mathbf{S}\|}$$



▶ Relative distance between S and  $\hat{S} \Rightarrow$  Smallest matrix E that maps S into a permutation of  $\hat{S}$ 

$$\mathcal{E} = \left\{ \mathbf{E} : \mathbf{P}^{\mathsf{T}} \hat{\mathbf{S}} \mathbf{P} = \mathbf{S} + \mathbf{E}^{\mathsf{T}} \mathbf{S} + \mathbf{S} \mathbf{E} \right\} \quad \Rightarrow \quad d(\mathbf{S}, \hat{\mathbf{S}}) = \min_{\mathbf{E} \in \mathcal{E}} \|\mathbf{E}\| \leq \frac{\|\mathbf{S} - \mathbf{S}\|}{\|\mathbf{S}\|}$$

#### Theorem

Consider a GNN with L layers having integral Lipschitz filter  $H_{\ell}$  with constant C. Graphs S and  $\hat{S}$  satisfy  $d(S, \hat{S}) \leq \epsilon/2$ . The matrix E that achieves minimum distance satisfies  $||E/||E|| - I|| \leq \epsilon$ . It holds that for all signals x

$$\min_{\mathsf{P} \in \mathcal{D}} \|\Phi(\mathsf{x}; \hat{\mathsf{S}}, \mathcal{H}) - \mathsf{P}^{\top} \Phi(\mathsf{x}; \mathsf{S}, \mathcal{H}) \| \leq CL \varepsilon + \mathcal{O}(\varepsilon^2)$$

GNNs can be made stable to graph perturbations if filters are integral Lipschitz



Permutation Equivariance

Stability to Perturbations

Insights and Discussion

Illustrative Example: Recommendation Systems

#### Conclusions



- ▶ The GNN stability theorem is elementary to prove for an edge dilation  $\Rightarrow \hat{\mathbf{S}} = (1 + \varepsilon)\mathbf{S}$
- An edge dilation just produces a spectrum dilation  $\Rightarrow \hat{\lambda}_i = (1 + \varepsilon)\lambda_i$ ,  $\mathbb{E} = (\varepsilon/2)\mathbb{I}$



**Small deformations may result in large filter variations** for large  $\lambda$  if filter is not integral Lipschitz



- ▶ The GNN stability theorem is elementary to prove for an edge dilation  $\Rightarrow \hat{\mathbf{S}} = (1 + \varepsilon)\mathbf{S}$
- An edge dilation just produces a spectrum dilation  $\Rightarrow \hat{\lambda}_i = (1 + \varepsilon)\lambda_i$ ,  $\mathbb{E} = (\varepsilon/2)\mathbb{I}$



**Small deformations may result in large filter variations for large**  $\lambda$  if filter is not integral Lipschitz



- ▶ The GNN stability theorem is elementary to prove for an edge dilation  $\Rightarrow \hat{\mathbf{S}} = (1 + \varepsilon)\mathbf{S}$
- An edge dilation just produces a spectrum dilation  $\Rightarrow \hat{\lambda}_i = (1 + \varepsilon)\lambda_i$ ,  $\mathbb{E} = (\varepsilon/2)\mathbb{I}$



Integral Lipschitz is always stable  $\Rightarrow$  Eigenvalue does not move or filter does not move



- ▶ The GNN stability theorem is elementary to prove for an edge dilation  $\Rightarrow \hat{\mathbf{S}} = (1 + \varepsilon)\mathbf{S}$
- An edge dilation just produces a spectrum dilation  $\Rightarrow \hat{\lambda}_i = (1 + \varepsilon)\lambda_i$ ,  $\mathbb{E} = (\varepsilon/2)\mathbb{I}$



▶ Integral Lipschitz is always stable ⇒ Eigenvalue does not move or filter does not move



- Q2: What is wrong with linear graph convolutions?
- Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues



Limits their value in machine learning problems where features at large eigenvalues are important



- Q2: What is wrong with linear graph convolutions?
- Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues



Limits their value in machine learning problems where features at large eigenvalues are important



- Q2: What is wrong with linear graph convolutions?
- Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues



Limits their value in machine learning problems where features at large eigenvalues are important



- Q2: What is wrong with linear graph convolutions?
- Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues



▶ Limits their value in machine learning problems where features at large eigenvalues are important

- Q1: What is good about pointwise nonlinearities?
- Preserve permutation equivariance while generating low graph frequency components
  - $\Rightarrow$  Which we can discriminate with stable filters



Spectrum of rectified graph signal

 $\mathbf{x}_{\mathsf{relu}} = \mathsf{max}(\mathbf{x}, \mathbf{0})$ 

▶ The nonlinearity demodulates. It creates low frequency content that is stable



- Q1: What is good about pointwise nonlinearities?
- Preserve permutation equivariance while generating low graph frequency components
  - $\Rightarrow$  Which we can discriminate with stable filters



Spectrum of rectified graph signal

 $\mathbf{x}_{\mathsf{relu}} = \mathsf{max}(\mathbf{x}, \mathbf{0})$ 

▶ The nonlinearity demodulates. It creates low frequency content that is stable





- Q1: What is good about pointwise nonlinearities?
- Preserve permutation equivariance while generating low graph frequency components ⇒ Which we can discriminate with stable filters

GNNs are **stable** and **selective** information processing architectures

▶ The nonlinearity demodulates. It creates low frequency content that is stable



Permutation Equivariance

Stability to Perturbations

Insights and Discussion

Illustrative Example: Recommendation Systems

#### Conclusions

## Example: Movie Recommendation Systems



- Movie recommendation problem  $\Rightarrow$  Each node is a movie, each edge is the rating similarity
- $\blacktriangleright$  Rating similarities estimated from training set  $\Rightarrow$  Changing training set changes graph



### GNN trained with integral Lipschitz filters is more stable to graph estimation errors

Gama, Isufi, Leus, Ribeiro, "Graphs, Convolutions, and Neural Networks", arXiv:2003.03777, 2020

Gama, Tolstaya, Ribeiro, "Graph Neural Networks for Decentralized Controllers", arXiv:2003.10280, 2020



Permutation Equivariance

Stability to Perturbations

Insights and Discussion

Illustrative Example: Recommendation Systems

### Conclusions



- Successful learning on graphs  $\Rightarrow$  Scalability, exploit data structure, distributed implementation
- ► Graph neural networks (GNNs) ⇒ Graph convolutions followed by pointwise nonlinearities
- GNNs are permutation equivariant and stable to changes in the graph  $\Rightarrow$  Scale, transfer
- Graph convolutions are either stable or selective, but cannot be both
- ▶ Nonlinearities ⇒ GNNs are both stable and selective information processing architectures
- Movie recommendation  $\Rightarrow$  Stable to estimation errors in the rating similarity

Journal version:

Gama, Bruna, Ribeiro, "Stability Properties of Graph Neural Networks", arXiv:1905.04497, 2020.

Thank You!