
A Streaming On-Device End-to-End 
Model Surpassing Server-Side 

Conventional Model Quality and Latency

Presenters: Tara N. Sainath, Yanzhang (Ryan) He

Authors:
Tara N. Sainath, Yanzhang He, Bo Li, Arun Narayanan, Ruoming Pang, Antoine Bruguier, Shuo-yiin Chang, Wei Li,

Raziel Alvarez, Zhifeng Chen, Chung-Cheng Chiu, David Garcia, Alex Gruenstein, Ke Hu, Minho Jin,
Anjuli Kannan, Qiao Liang, Ian McGraw, Cal Peyser, Rohit Prabhavalkar, Golan Pundak, David Rybach,

Yuan Shangguan, Yash Sheth, Trevor Strohman, Mirko Visontai, Yonghui Wu, Yu Zhang, Ding Zhao 

ICASSP 2020



Outline

● Motivation
● Model Architecture
● Quality Improvements

○ Multi-Domain Data
○ Robustness to Accents
○ Learning Rates

● Latency Improvements
○ Joint RNN-T Endpointer
○ LAS Rescoring

● Experiments and Results



Motivation

● E2E models are attractive for on-device [Y. He, T.N. Sainath et al. 2018][J. Li et al. 
2019]

● Running ASR models on-device is challenging
○ Streaming recognition
○ Low latency
○ Quality comparable to server-side conventional model

● Goal: Present a streaming E2E model that surpasses server-side conventional 
model in terms of both quality and latency

https://arxiv.org/abs/1811.06621
https://arxiv.org/abs/1909.12415
https://arxiv.org/abs/1909.12415
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Two-Pass Model Overview

● Model described in: T.N. Sainath, R. Pang 
et al., “Two-Pass End-to-End Speech 
Recognition”, Proc. Interspeech, 2019.

● Training:
○ 1st-pass: shared-encoder + RNN-T decoder
○ 2nd-pass: additional encoder + LAS decoder

● Decoding:
○ 1st-pass RNN-T produces hypotheses 
○ LAS decoder rescores hypotheses from RNN-T

https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1908.10992.pdf&sa=D&sntz=1&usg=AFQjCNGPvbo62I5I78I7DBgJdFWs2kcteg
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1908.10992.pdf&sa=D&sntz=1&usg=AFQjCNGPvbo62I5I78I7DBgJdFWs2kcteg
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Multi-Domain Data

● E2E models are trained on audio-text pairs, which is a fraction of data 
compared to a conventional language model

● Incorporate data from a variety of domains to increase vocabulary: Search, 
Farfield, Telephony, YouTube [A. Narayanan et al., ASRU 2019]

● Mixing domains creates issues
○ Transcription convention (“$100” versus “one hundred dollars”)
○ Different amounts of background/foreground speech
○ Different amounts of background noises

● Solution: Feed a 1-hot vector of the domain-id to the encoder (shown to be 
successful for multi-lingual/dialect ASR [B. Li et al., ICASSP 2018])

https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1910.11455&sa=D&sntz=1&usg=AFQjCNGxD_rXLEWw3B2r6ZAjQceQZLXmww
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1712.01541&sa=D&sntz=1&usg=AFQjCNFEAPYllhodRldKsG7rqHJrCK-yxA


Robustness to Accents 

● A common way conventional ASR systems handle accents is through a lexicon 
with multiple pronunciations

● Our E2E models emit wordpieces and decide a-priori how to break-up words 
based on training data

● To improve E2E accent robustness, we include additional English training data 
from Australia, New-Zealand, United Kingdom, Ireland, India, Kenya, Nigeria and 
South Africa (en-X)

● To handle spelling differences (color versus colour), all data is transliterated to 
US English spelling before training.

● Goal: Train a single E2E model to be robust to multiple en-X accents without 
knowing which accent the utterance comes from during inference. The 
transcripts are all recognized as US English spelling.



Learning Rates

● With increased multi-domain and 
en-X data, we change the learning 
rate to ramp up and then be 
constant

● To help with training stability, we 
maintain  an exponential moving 
average (EMA) of the weights 
during training
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ASR

EOQ
(Predicted by 
Endpointer)

TRUE_EOQ_TIME

The end time of the last word 
from forced alignment.

The audio time difference between when the user finishes speaking
and when the endpointer generates EOQ.

The computation time a 2nd-pass rescorer needs to take after EOQ is generated.

 rescoring 
finishes

Mic is closed after an endpointer (EP) predicts end-of-query (EOQ).
More aggressive endpointer could cut off trailing words.

Endpointer Latency

Rescoring Latency



Joint RNN-T Endpointer

● Incorporate endpointing decision 
into RNN-T by having it predict </s>, 
i.e. the end-of-query (EOQ) token.

● The time for emitting </s> is 
constrained to be as close to the 
last word as possible Prediction 

Network Encoder

Joint Network

Softmax

SOS c a t

c a t </s>

Input label tokens

acoustic frames

output label tokens
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To help the model predict </s> (EOQ) as 
close to the end of the last word as possible.

Bo Li et al., "Towards Fast and Accurate Streaming End-to-End ASR", ICASSP 2020

</s> Penalties in Training

 (        is the last token, i.e. </s>)



LAS Rescoring

● Apply LAS rescoring to lattice instead of N-best list to avoid duplicate 
computation on the common prefixes between hypotheses.

● Apply batch inference on the
arcs expanded from the same
node with dynamic batch size,
to utilize matrix-matrix
multiplication more efficiently. 
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● Unidirectional additional 
encoder output.

Offload Part of LAS Computation to First-Pass

(unidirectional)

...

Additive attention

LSTM
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● Projection of the additional encoder 
output in the additive attention.

Compute and cache in the 1st-pass streaming:
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Experimental Setup

● 1st-pass RNN-T model [Y. He et al. 2018]: 120M parameters, 4096 Word Pieces
● 2nd-pass LAS model [T.N. Sainath et al. 2019]: 33M parameters
● Baseline conventional server model:

○ Low-frame-rate AM, 1st-pass 5-gram LM, MaxEnt LM 2nd-pass rescoring, 80GB+.

● Data: anonymized utterances from Google traffic
○ Transcripts are normalized: lower-cased, punctuations removed
○ Test data: 

■ Search: ~14,000 Search utterances
■ Numeric:~4,000 numeric utterances
■ Multi-talker: ~6,000 multi-talker interfering speech

● Evaluation metrics:
○ Word error rate (WER).
○ Median and 90-percentile endpointer latency (EP50 / EP90).
○ Median and 90-percentile LAS computational latency.

https://arxiv.org/abs/1811.06621
https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fpdf%2F1908.10992.pdf&sa=D&sntz=1&usg=AFQjCNGPvbo62I5I78I7DBgJdFWs2kcteg


Conventional Server Model
Without endpointer

RNN-T Only
Without endpointer

Without LAS rescoring



Domain-ID Models

Model Search Numeric Multi-talker

Conventional Server 6.3 13.3 8.4

RNN-T (Search) 6.8 10.1 10.4

RNN-T (Multi-Domain) 6.7 11.7 8.0

RNN-T (Multi-Domain + Domain-id) 6.6 10.4 7.7

Feeding domain-id improves robustness to                                                                
numerics and background speech babble



Robustness to Accents

Training with additional en-X data improves accented performance

Search
Conventional 

Server

RNN-T 
(Multi-domain+

Domain-id)
+en-X

en-us 6.3 6.6 6.7

en-au 12.1 12.6 10.3

en-gb 11.2 10.9 9.1

en-in 23.9 24.7 17.8

en-ke 27.2 28.3 27.2

en-ng 25.6 23.6 22.8

en-za 14.3 15.7 14.8

Note: it is assumed that the 
accent information of each 
utterance during inference is 
NOT available to all systems.

All the en-X test sets reference 
transcripts are converted to US 
English spelling.

For the technique and 
performance when the accent 
information IS available, see [B. Li 
et al., ICASSP 2018].

https://arxiv.org/pdf/1712.01541
https://arxiv.org/pdf/1712.01541


Learning Rates

Model Search Numeric Multi-talker

Conventional Server 6.3 13.3 8.4

RNN-T (Decay Learning Rate) 6.7 10.4 7.7

RNN-T (Constant Learning Rate + EMA) 6.2 10.5 7.1

Changing learning rate schedule given increased 
amount of data improves results by 7% relative



Conventional Server Model
Without endpointer

Joint RNN-T EP
Without LAS rescoring



Endpointer Latency

Model + Endpointer WER (Search) EP50 (ms) EP90 (ms)

RNN-T without EP 6.2 N/A N/A

RNN-T + EOQ EP [1] 7.4 450 860

Joint RNN-T EP 6.8 430 790

Joint RNN-T EP achieves much better WER vs. latency trade-off than a 
separate EOQ EP, with 8% relative improvement on both WER and EP90.

[1] Shuo-Yiin Chang et al., "A Unified Endpointer Using Multitask and Multidomain Training", ASRU 2019



Conventional Server Model
With endpointer

Joint RNN-T EP + LAS



LAS Rescoring Computational Latency

Lattice Rescoring with LAS 50% latency (ms)* 90% latency (ms)*

Without batch inference over arcs 86 145

With batch inference over arcs 58 97

Dynamic batching inference in lattice rescoring with 
LAS reduces the computational latency by >30%.

*Benchmarked 
Search utterances 
on a Google Pixel4 
phone with CPU.



E2E Versus Server

Model WER EP50 EP90

Joint RNN-T EP 6.8 430 790

+ LAS, MWER[1] 6.1 430 780

Conventional Server 6.6 460 870

Joint RNN-T EP + LAS has better 
WER and latency than server.

[1] Rohit Prabhavalkar et al., "Minimum Word Error Rate Training for Attention-based Sequence-to-Sequence Models", ICASSP 2018



Conclusions
● Presented a streaming on-device 1st-pass RNN-T + 2nd-pass LAS model

○ 400 times smaller, 8% lower WER, 10% lower EP latency than conventional server model.

● Model offers improved quality over conventional server model
○ Using domain-id with multi-domain data
○ Using en-X data for accent robustness
○ Constant learning rate with EMA to handle increased data

● Model offers improved latency over conventional server model
○ E2E endpointer to predict end of sentence
○ LAS rescoring: batch inference on lattice arcs, offload some computation into the 1st-pass

● Current on-device model available on Google Pixel phones and the new 
Google Nest Mini speakers for multiple domains/applications!

○ Next Generation Assistant (voice search/actions), Gboard (short message dictation)
○ Call Screen (telephony speech), Recorder (long-form speech)
○ Live Caption (video/audio captioning), Assistant on Nest Mini (farfield/noisy speech)

https://www.blog.google/products/assistant/next-generation-google-assistant-io/
https://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html
https://blog.google/inside-google/googlers/why-spam-calls-are-more-common/
https://ai.googleblog.com/2019/12/the-on-device-machine-learning-behind.html
https://www.blog.google/products/android/live-caption/
https://www.youtube.com/embed/XKmsYB54zBk?start=1688&autoplay=1
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Contacts: {tsainath, yanzhanghe}@google.com


