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ASR and the Cocktail-Party Problem

State-of-the-art ASR can be very accurate but performance drops significantly
in a cocktail party scenario

Recognizing the speech of a target speaker mixed with other people speech’s in a
single-channel audio is an ill-posed problem
• Many different hypotheses about what the target speaker says are consistent with

the mixture signal, we do not know which utterance corresponds to the target
speaker

• We addressed this problem by exploiting an additional information: the video of
talking face of the target speaker
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Speech Enhancement and Speech Recognition

Some robust ASR systems process the audio signal through a speech
enhancement or separation stage

Jointly training the ASR and enhancement modules can be more beneficial than
training them separately

Goal: analyze the interaction between the ASR and enhancement tasks
• Understand whether (and how) it is advantageous to train them jointly

How?
• Train and analyze a simple AV-ASR model
• Analyze whether adding a preliminary speech enhancement stage helps in performing

the ASR task
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Joint Model

We analyze a simple and common architecture:

Based on deep-BLSTM

Composed of 2 sub-models:
• Enhancement Model
• ASR Model

With the following model inputs:
• Noisy Audio information: s = [s1, . . . , sT ]
• Face Motion vector: v = [v1, . . . , vT ]

Where only the enhancement part exploits the visual information, while the ASR
part receives in input only the output of the speech enhancement module
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Enhancement Model

Goal: de-noising the speech of the speaker of interest

Input at time step i : xi =

[
si
vi

]
,

Target: a slice of the spectrogram of the clean utterance spoken by the target
speaker.

Loss function: Mean Squared Error (MSE )
• Lenh(yi , ŷi ) = MSE (yi , ŷi ).
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ASR Model

Input: computes the mel-scale filter bank representation derived from the
spectrogram si

Maps xasri to the phone label l̂i by using Z asr BLSTM layers

Uses the CTC loss
• Lasr (lj , l̂j) = CTCloss(lj , l̂j)

3 different versions:

1 Fed with acoustic features
xasri = smi

2 Fed with motion vector computed from face landmarks
xasri = vi

3 Uses both audio and visual features

xasri =

[
smi
vi

]
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Two Training Strategies

Goal: Analyse the behaviors of the ASR and enhancement loss

Joint training
• Ljoin = λ · Lenh + Lasr

• We explored 2 different types of λ:
I Constant
I Adaptive: λadapt = 10blog10(L

asr )c/10blog10(L
enh)c

Alternated training
• Alternation of speech enhancement and ASR training phases
• Performs a few steps of each phase several times
• Alternated two full phases training

I the two phases are performed only one time each

• The Lasr optimization phase updates both θenh and θasr parameters
• Weight freezing: optimize Lasr by only updating θasr
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Experimental Setup

Two Audio-visual limited-size datasets
• GRID, TCD-TIMIT
• Speaker-independent
• Respectively split into disjoint sets of 25/4/4 and 51/4/4 speakers for

training/validation/testing
• Used standard TIMIT phone dictionary

I GRID: 33 phones, TCD-TIMIT: 61 phones

Baseline
• ASR-only models

I 2 layers of 250 hidden units and were trained by using back-propagation through time
(BPTT) with Adam optimizer

Joint Model
• Same number of layers for both ASR and enhancement components

8 of 14



Experimental Results

GRID TCD-TIMIT
Training Method PER PER-61 PER-39

Baseline-ASR-Mod. Clean-Audio 5.8 46.7 40.6
Baseline-ASR-Mod. Mixed-Audio 49.4 78.4 71.3
Baseline-ASR-Mod. Mixed-A/V 49.9 77.2 70.9
Baseline-ASR-Mod. Visual 29.4 78.6 74.7

Joint-Mod. Joint Training 15.4 53.1 47.7
λ = 1 λ = λadapt

Joint-Mod. Alt. Training 2 full 16.0 45.6 41.2
Joint-Mod. Alt. Training 2 full freeze 18.7 44.3 40.0
Joint-Mod. Alt.Training 13.9 44.9 40.6
Joint-Mod. Alt. Training freeze 18.1 61.3 55.5
Joint-Mod. PIT Alt. Training 43.3 67.1 62.4
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Alternate Training Analysis
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Joint Loss Training Analysis
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Alternated Training Analysis
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Conclusion

Jointly minimizing the speech enhancement loss and the CTC loss may not the
best strategy to improve ASR

Alternation of the speech enhancement and ASR training phases
• The loss function that was not considered for the training phase tends to diverge

The interaction between the two loss functions can be exploited in order to obtain
better results
• The alternated training method shows that the recognition error can be gradually

reduced by wisely alternating the two training phases
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The End

Thanks for the attention!

Contacts:
Luca Pasa: lpasa@math.unipd.it
Giovanni Morrone: giovanni.morrone@unimore.it
Leonardo Badino: leobad08@gmail.com
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