

MoGA: Searching Beyond MobileNetV3

Authors: Xiangxiang Chu, Bo Zhang, Ruijun Xu Speaker: Bo Zhang AutoML Team, Xiaomi Al Lab

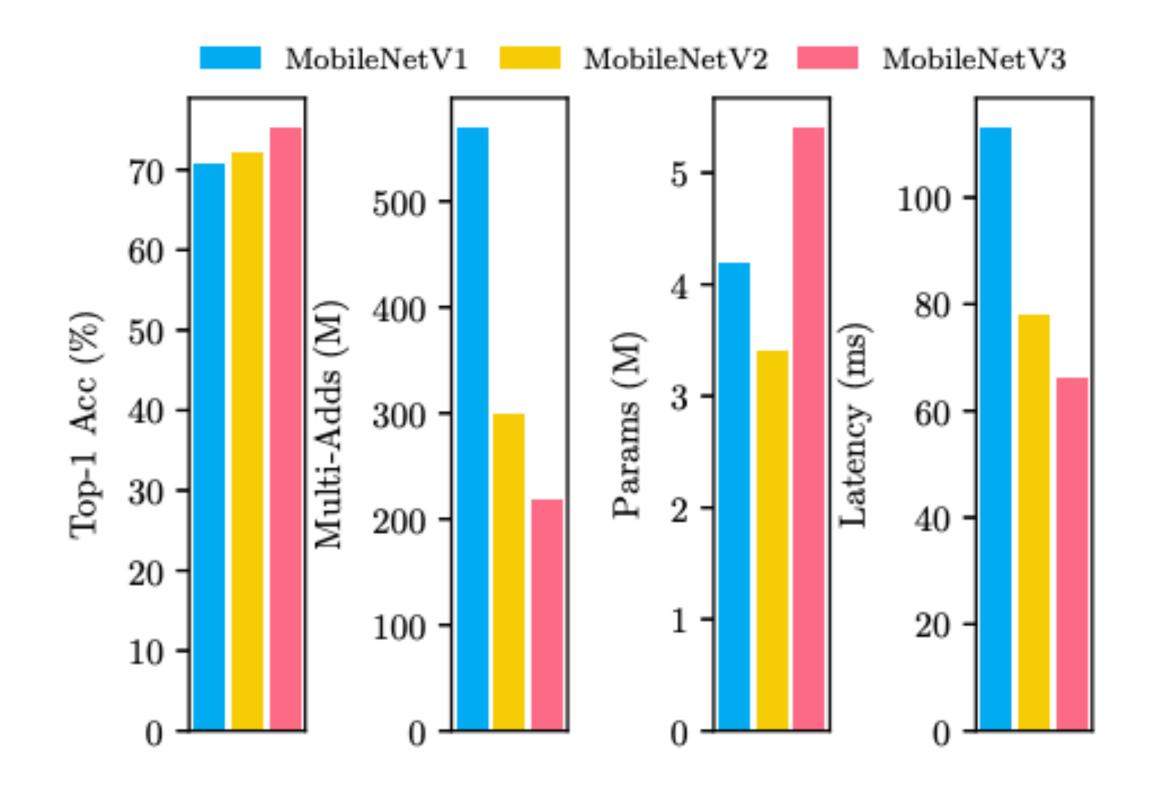
Trend of Mobile Network Design

- al 2019) Series
- Neural Architecture Search (RL/EA, weight-sharing like one-shot, or differentiable)
- Latency-awareness is considered for mobile CPU (Tan et al. 2018)
 - Reward: ACC ×(LAT/TAR)^w

• Evolution of MobileNet (Howard et al 2017, Sandler et al. 2018, Howard et

How MobileNets have changed

- Increased accuracy
- Less Multi-Adds
- More Parameters
- Lower latency



Background on Neural Architecture Search

- Search Space Design (Zoph et al. 2017, Tan et al. 2019)
- Searching Algorithms (Reinforcement learning, Evolutionary algorithms, Gradient-based)
- Model Evaluation (Incomplete training, weight-sharing via supernet)

Why Mobile GPU-Awareness (MoGA)?

- Latency is a key factor in mobile applications (e.g. portrait segmentation realtime preview)
- Neural models are deployed usually on mobile GPUs for faster speed, rather than CPU
- CPU is not a good proxy for GPU (low correlation)

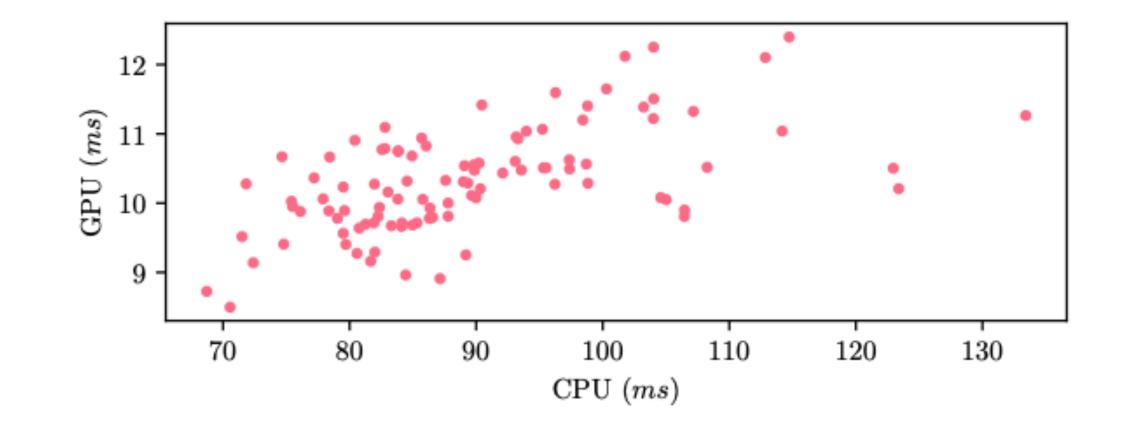


Figure 2: Latency relationship on mobile CPUs vs. on mobile GPUs.

• Goal: lower latency, more parameters (to solve underfitting), higher accuracy (MOP)

minimize
$$\{-Acc(m), Lat(m), -Params(m)\}, \forall m \in \Omega$$

s.t. $w_{acc} + w_{lat} + w_{params} = 1, \forall w \ge 0$ (3)

• Weighted crowding distance in NSGA-II (Deb et al. 2002), care more about acc, lat, less for params

$$D(m_j) = \sum_{i=1}^{n} w_i * \frac{O_{neighbor+}^i - O_{neighbor-}^i}{O_{max}^i - O_{min}^i}.$$
 (4)

Problem Formulation

- Built on top of MobileNetV3-Large (Howard \bullet el al. 2019)
- 12 choices at block-level \bullet
- Size 12^14

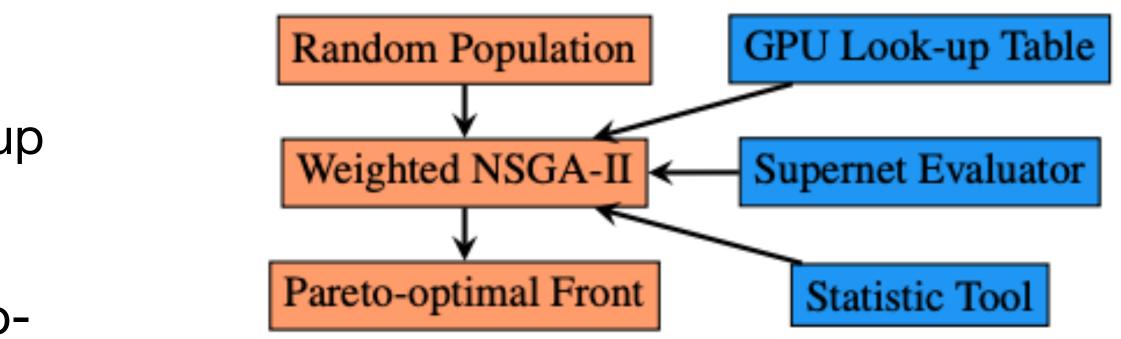
Our Search Space Design

Index	Expansion	Kernel Size	SE
0	3	3	-
1	3	3	1
2	3	5	-
3	3	5	1
4	3	7	-
5	3	7	1
6	6	3	-
7	6	3	1
8	6	5	-
9	6	5	1
10	6	7	-
11	6	7	1

Table 1: Each layer in our search space has 12 choices. SE: Squeeze-and-Excitation.

The NAS Workflow

- Train Supernet as in FairNAS (Chu et al. 2019)
- Get each submodel's latency with a look-up table
- Search with weighted NSGA-II until Paretooptimality



Quick Latency Measurement

- Build a Latency Lookup Table based on the cost of each block
- Tool: Mobile AI Compute Engine (MACE) on Mi Mix 3.
- Measurement Accuracy: 0.0571ms RMSE

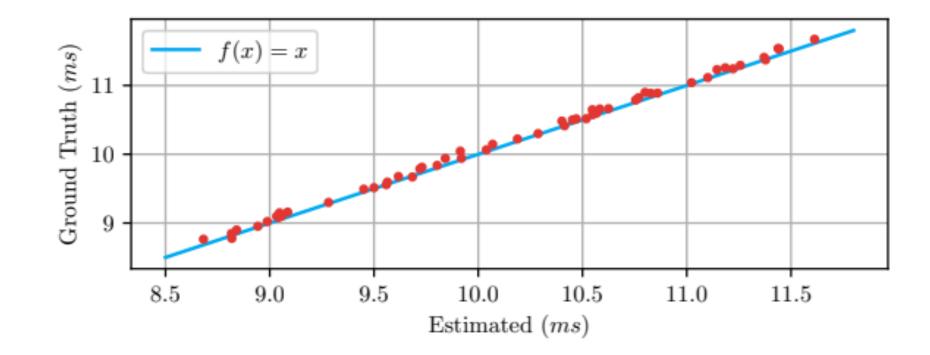


Fig. 3. Mobile GPU latency measured vs. predicted ones. The latency RMSE is 0.0571ms.

Searched MoGA Models

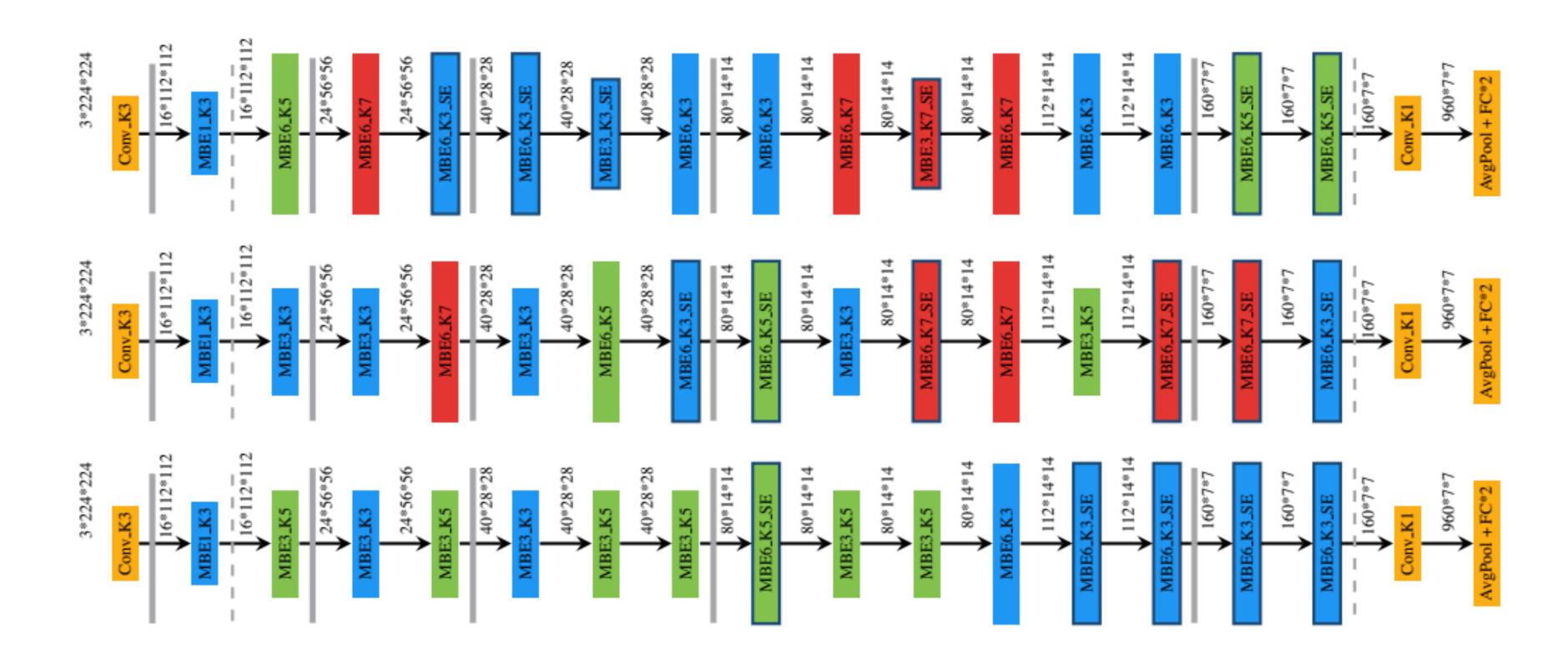


Fig. 4. The Architectures of MoGA-A, B, C, from top to bottom. Note Ex_Ky_SE means an expansion rate of x for its expansion layer and a kernel size of y for its depthwise convolution layer, SE for squeeze-and-excitation. Grey thick lines refer to downsampling points.

Comparison with SOTA Mobile Models

- MoGA-A with 75.9% accuracy with close mobile GPU latency to MobileNetV3 (75.0%)
- MoGA-C has faster speed on mobile GPU that MobileNetV3 with higher accuracy (75.3%)

Methods	$\times +$ (M)	Р (М)	L_g^S (ms)	L_g^M (ms)	L_c (ms)	Top-1 (%)
MobileNetV2 [2]	300	3.4	6.9 [†]	7.0 [†]	78	72.0
MobileNetV3 [3]	219	5.4	10.8*	9.5*	66	75.0*
MnasNet -A1 [5]	312	3.9	-	-	78	75.2
MnasNet-A2 [5]	340	4.8	-	-	84	75.6
FBNet-B [9]	295	4.5	-	-	23 [‡]	74.1
Proxyless-R [6]	320†	4.0	7.3†	7.9†	78	74.6
Proxyless GPU [6]	465†	7.1	9.6†	9.8†	124	75.1
Single-Path [10]	365	4.3	-	-	79	75.0
Once for All [27]	327	-	-	-	112*	75.3
FairNAS-A [7]	388	4.6	9.8 [†]	9.7 [†]	104	75.3
MoGA-A (Ours)	304	5.1	11.8	11.1	101	75.9
MoGA-B (Ours)	248	5.5	10.3	10.0	81	75.5
MoGA-C (Ours)	221	5.4	9.6	8.8	71	75.3

Table 1. Comparison of mobile models on ImageNet. *P*: Number of parameters, L_g^S (L_g^M): SNPE (MACE) latency on mobile GPU, L_c : TFLite latency on CPU *: Our reimplementation. [†]: Based on its published code. [‡]: Samsung Galaxy S8. *: Samsung Note 8.

Mobile GPU-awareness Analysis

- What do we learn:
 - Mobile CPU: Prefer fewer element-wise ops
 - Mobile GPU: Allow more percentages on element-wise ops

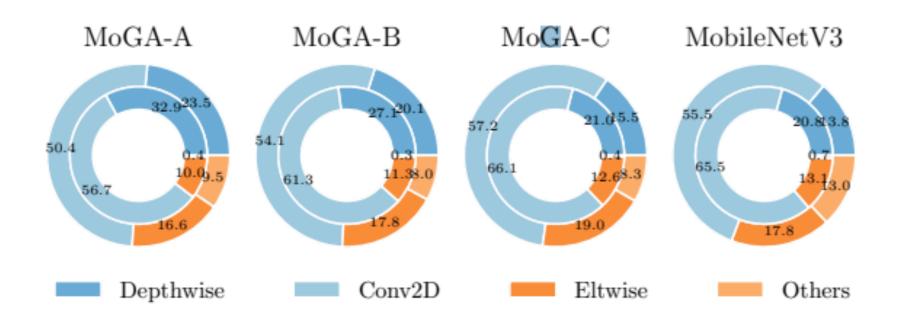
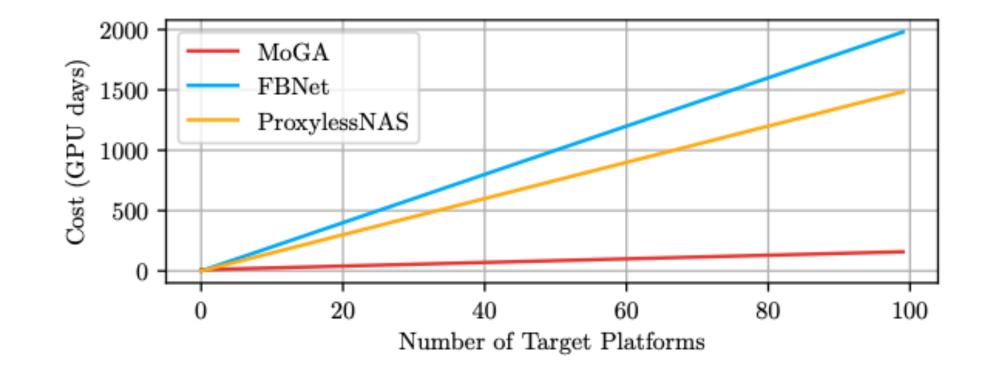


Fig. 1. Latency pie chart of MoGA-A, B, C and MobileNetV3 operations when run on mobile CPUs (inner circle with TFLite) vs. on mobile GPUs (outer circle with MACE).

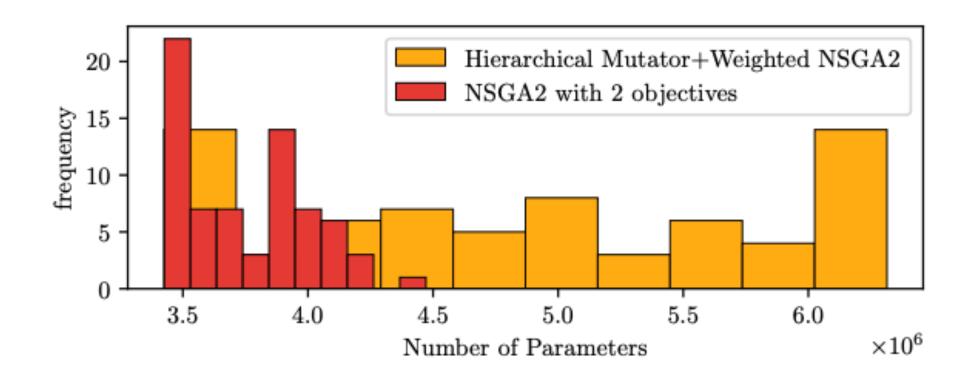
Search Cost Analysis

- 12 GPU days training & searching (200x less that MnasNet)
- For different target platforms,
 - Rebuild a latency lookup table \bullet
 - O(1) cost to run the search (the supernet is trained only once)



Why Three Objectives?

 Encouraging more number of parameters expands the searched model range, which is expected in mobile end



Ablation Study on Search Algorithms

- Search Algorithms \bullet
 - Weighted MoreMNAS (Chu et al. 2019), a variant of NSGA-II with three objectives
 - Vanilla weighted NSGA-II with three objectives
 - NSGA-II with two objectives \bullet

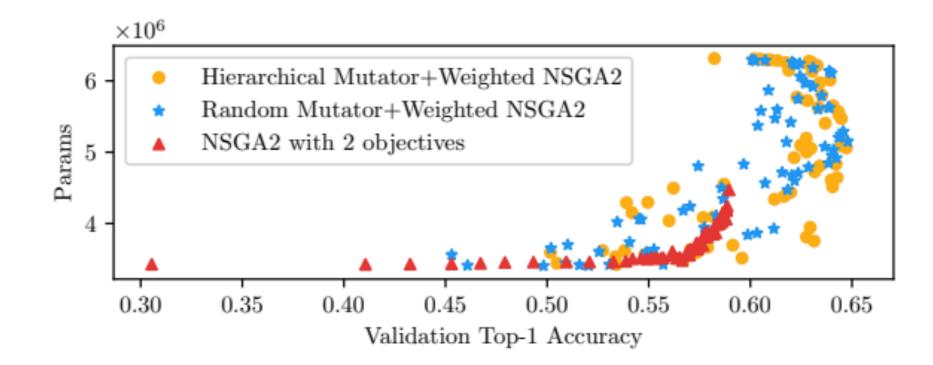


Fig. 5. Pareto Front of weighted NSGA-II with hierarchical mutator compared with that of a random mutator and of two objectives (accuracy, latency).

Conclusion

- Hardware-specific design is helpful
- Solving with MOP is necessary
- Three objectives expands the searched range
- One-shot supernet is less costly
- Mobile inference framework discrepancy could also be exploited

If you still have some questions, please send emails to us. (zhangbo11@xiaomi.com)

Thanks for watching!