

DEFENSE AGAINST ADVERSARIAL ATTACKS ON SPOOFING COUNTERMEASURES OF ASV

Haibin Wu^{1*}, Songxiang Liu^{2*}, Helen Meng², Hung-yi Lee¹

¹ Speech Processing and Machine Learning Laboratory, National Taiwan University ²Human-Computer Communications Laboratory, The Chinese University of Hong Kong

* Equal contribution.

1

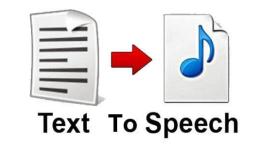
OUTLINE

- Motivation
- Adversarial attack
- Defense
- Experiment
- Conclusion

Motivation

Background – Anti-spoofing

- A great number of automatic speaker verification (ASV) models with high accuracy have been proposed.
- However, high-performance ASV may still be attacked by spoofing audios
- These spoofing audios are audios generated by replay, text-to-speech or voice conversion.

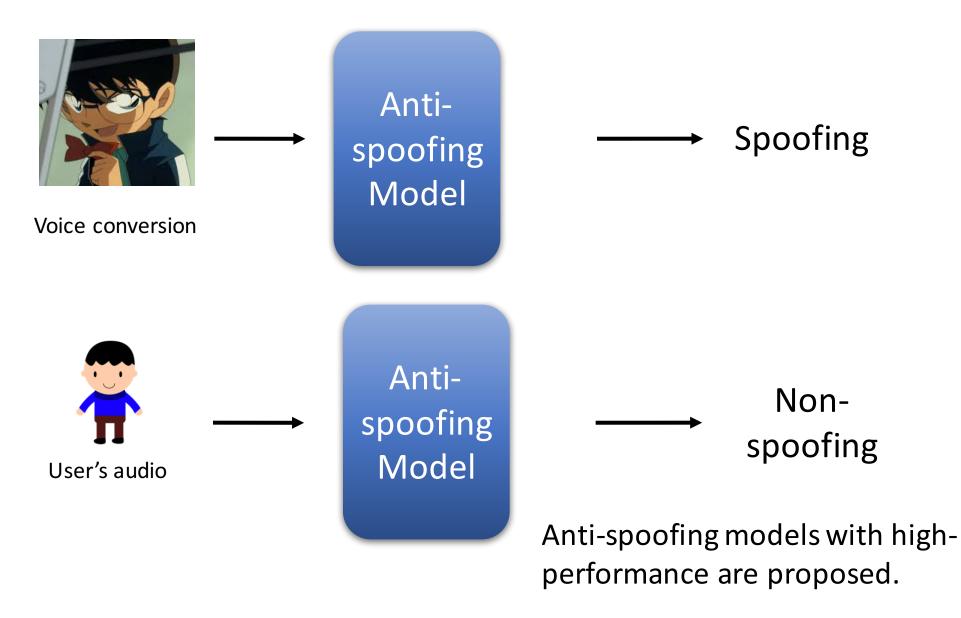


audio replay

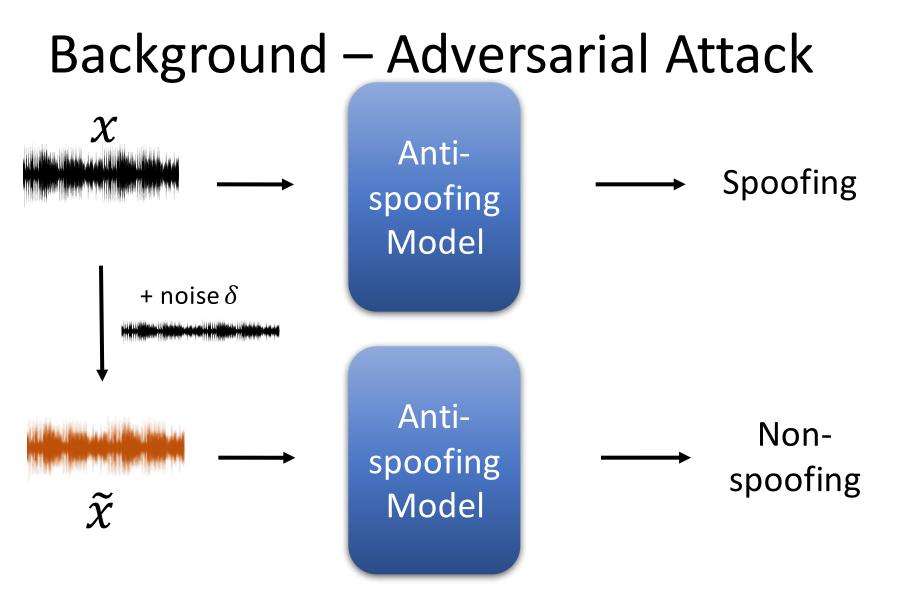
text to speech

voice conversion

Background – Anti-spoofing



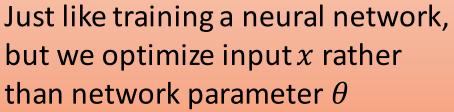
5

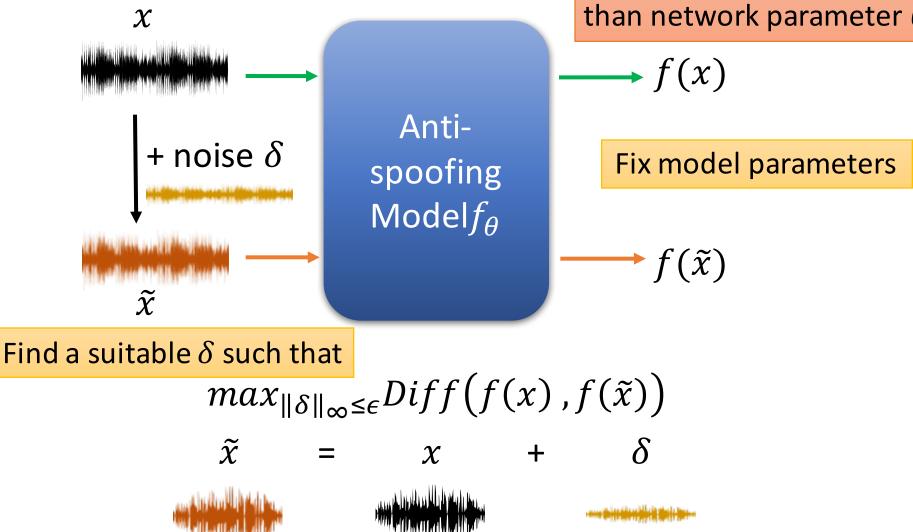


• Address the vulnerability of anti-spoofing systems to adversarial attacks and devise defense methods.

Adversarial attack

Attack – Finding Adversarial Example





Attack Method: Projected Gradient Descent

$$x^* = \arg \max_{\|\delta\|_{\infty} \le \epsilon} Diff(f(x), f(\tilde{x}))$$

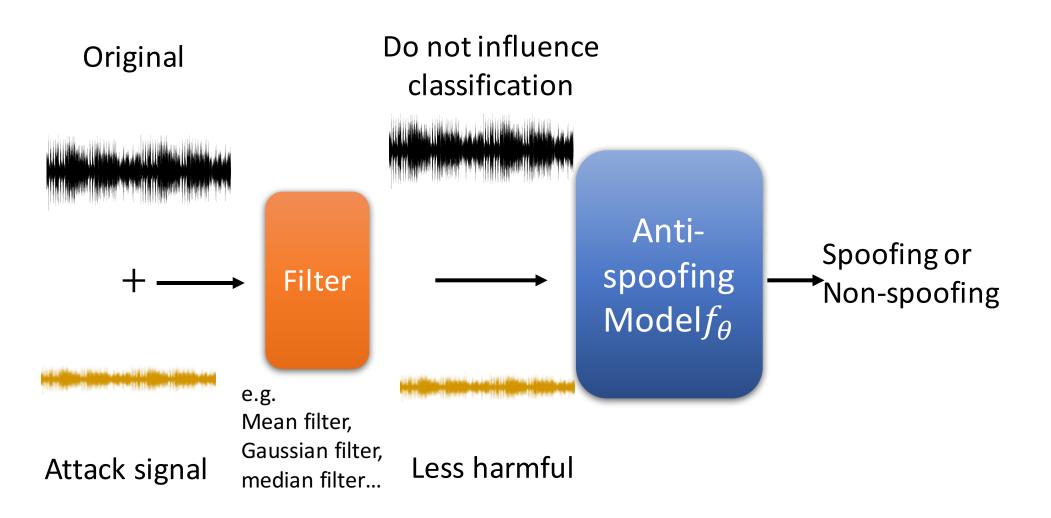
An iterative method. Starting from input $x_0 = x$, then it is iteratively updated as:

$$\begin{aligned} x_{k+1} &= clip(x_k + \alpha \cdot sign\left(\nabla_{x_k} Diff(f(x), f(x_k))\right), \\ for \ k &= 0, \dots, K-1 \end{aligned}$$

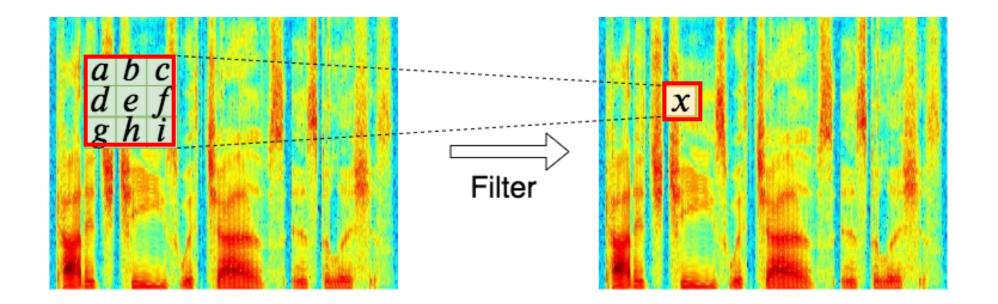
 α is step size, *K* is the iteration number and the $clip(\cdot)$ is the clipping function.

Defense

Defense Method 1: Spatial Smoothing



Defense Method 1: Spatial Smoothing



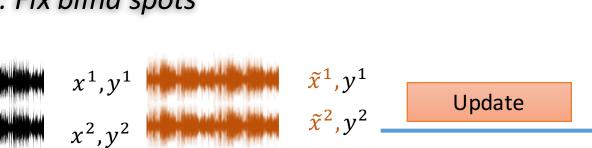
Mean filter: $x = \frac{1}{9}(a + b + c + d + e + f + g + h + i)$ Gaussian filter: $x = \frac{1}{16}(a + 2b + c + 2d + 4e + 2f + g + 2h + i)$ Median filter: x = the median of (a, b, c, d, e, f, g, h. i)

Defense Method 2: Adversarial Training Then we do the two steps iteratively Idea: Find and fix blind spots Step 1: Find blind spots Anti-

original examples

Step 2: Fix blind spots

 x^N , y^N



•••

 \tilde{x}^N, y^N

adversarial examples

 \tilde{x}^1, y^1

 \tilde{x}^2, y^2

...

Experiment

Experiment setup

Dataset

LA partition of ASVspoof 2019 challenge which involves synthesized audios from TTS and VC models.

Two different anti-spoofing models

SENet [Lai et al. 2019] and VGG [Zeinali et al. 2018]

Attack method

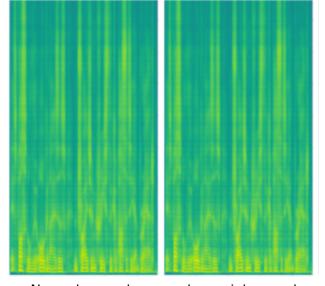
PGD

Two defense methods

Spatial smoothing and adversarial training

Testing accuracies

	Before adversarial training
Normal examples	99.97%
Adversarial examples	48.32%



Normal example adversarial example

- The SENet is subject to adversarial attacks.
- Listeners can not tell the difference between adversarial example and original example.

Testing accuracies

	Before adversarial training	After adversarial training
Normal examples	99.97%	99.75%
Adversarial examples	48.32%	92.40%
Adversarial examples + median filter	82.00%	93.74%
Adversarial examples + mean filter	82.39%	93.76%
Adversarial examples + Gaussian filter	78.93%	83.72%

- All three kinds of filters have considerable performance in improving the robustness of anti-spoofing models against adversarial examples.
- The improvement of Gaussian filter is much less than the other two filters.

Testing accuracies

	Before adversarial training	After adversarial training
Normal examples	99.97%	99.75%
Adversarial examples	48.32%	92.40%
Adversarial examples + median filter	82.00%	93.74%
Adversarial examples + mean filter	82.39%	93.76%
Adversarial examples + Gaussian filter	78.93%	83.72%

• Adversarial training improves the robustness of antispoofing models.

Testing accuracies

	Before adversarial training	After adversarial training
Normal examples	99.97%	99.75%
Adversarial examples	48.32%	92.40%
Adversarial examples + median filter	82.00%	93.74%
Adversarial examples + mean filter	82.39%	93.76%
Adversarial examples + Gaussian filter	78.93%	83.72%

- Equipping adversarial training with median filter or mean filter increases the testing accuracy for adversarial examples compared with just using adversarial training.
- While adding Gaussian filter decreases the testing accuracy.

Experiment result: VGG

Testing accuracies

	Before adversarial training	After adversarial training
Normal examples	99.99%	99.99%
Adversarial examples	37.06%	98.60%
Adversarial examples + median filter	92.72%	98.96%
Adversarial examples + mean filter	93.95%	99.24%
Adversarial examples + Gaussian filter	84.39%	87.22%

• We can see a similar phenomenon for VGG

Conclusion

Conclusion

- Both adversarial training and spatial smoothing can make the anti-spoofing models robust enough to counter adversarial attacks.
- More advanced defense methods should be adopted to improve the robustness of antispoofing models.