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• A	great	number	of	automatic speaker verification (ASV)
models with	high	accuracy have	been	proposed.	

• However, high-performance	ASV	may	still	be	attacked	by	
spoofing	audios	

• These spoofing audios are audios generated	by	replay,
text-to-speech or	voice	conversion.

Background	– Anti-spoofing	

audio	replay text to speech voice	conversion
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Background	– Anti-spoofing	
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Anti-spoofing	modelswith	high-
performance are proposed.
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Background	– Adversarial	Attack	
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• Address	the	vulnerability	of	anti-spoofing	systems	to	
adversarial	attacks	and	devise	defense	methods.



Adversarial attack
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								𝑥' = 𝑥 + 𝛿
𝑚𝑎𝑥 + ,-.𝐷𝑖𝑓𝑓 𝑓 𝑥 	, 𝑓 𝑥'

Fix	model parameters

Find	a	suitable	𝛿	such	that

Just	like	training	a	neural	network,	
but	we optimize input	𝑥	rather
than network	parameter	𝜃

Attack	– Finding	Adversarial	Example	
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Attack	Method:	Projected	Gradient	Descent

An iterative	method.	Starting from input 𝑥3 = 𝑥,
then it is	iteratively	updated as:

𝑥567 = 𝑐𝑙𝑖𝑝(𝑥5 + 𝛼 ⋅ 𝑠𝑖𝑔𝑛 𝛻BC𝐷𝑖𝑓𝑓 𝑓 𝑥 	, 𝑓 𝑥5 ,
𝑓𝑜𝑟	𝑘 = 0,… ,𝐾 − 1

𝛼 is	step	size, 𝐾 is	the iteration number and the	
𝑐𝑙𝑖𝑝(·) is the clipping function.

𝑥∗ = 𝑎𝑟𝑔 max
+ ,-.

𝐷𝑖𝑓𝑓 𝑓(𝑥), 𝑓(𝑥')
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Defense	Method	1:	Spatial	Smoothing
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Mean filter:	𝑥 = 7
Q (𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ+ 𝑖)

Gaussian filter:𝑥 = 7
7V(𝑎 + 2𝑏 + 𝑐 + 2𝑑 + 4𝑒 + 2𝑓 + 𝑔 + 2ℎ + 𝑖)

Median filter: 𝑥 = 𝑡ℎ𝑒	𝑚𝑒𝑑𝑖𝑎𝑛	𝑜𝑓	(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ. 𝑖)

Defense	Method	1:	Spatial	Smoothing
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Idea:
Find	and	fix	blind	spotsStep 1: Find	blind	spots	
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Step 2: Fix	blind	spots
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… …
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Update

Defense	Method	2:	Adversarial	Training
Then	we	do	the	two	steps	iteratively
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Experiment
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Experiment	setup
Dataset

LA	partition	of	ASVspoof 2019	challenge	which	involves	
synthesized	audios	from	TTS	and	VC	models.

Two	different	anti-spoofing	models

SENet [Lai et	al.	2019] and	VGG [Zeinali et	al.	2018]

Attack	method

PGD

Two	defense	methods

Spatial	smoothing	and	adversarial	training
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Experiment	result: SENet

Before adversarial
training

After adversarial
training

Normal examples 99.97% 99.75%

Adversarial examples 48.32% 92.40%

Adversarial examples
+ median filter

82.00% 93.74%

Adversarial examples
+ mean filter

82.39% 93.76%

Adversarial examples
+ Gaussian filter

78.93% 83.72%

Normal example adversarial example

• The SENet is	subject	to	adversarial	attacks.

• Listeners	can	not	tell	the	difference	between	
adversarial	example	and	original	example.

Testing accuracies
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Experiment	result: SENet

Before adversarial
training

After adversarial
training

Normal examples 99.97% 99.75%

Adversarial examples 48.32% 92.40%

Adversarial examples
+ median filter

82.00% 93.74%

Adversarial examples
+ mean filter

82.39% 93.76%

Adversarial examples
+ Gaussian filter

78.93% 83.72%

• All	three	kinds	of	filters	have	considerable	performance	in	improving	the	
robustness	of	anti-spoofingmodels	against	adversarial	examples.	

• The	improvement	of	Gaussian	filter	is	much	less	than	the	other	two	filters.

Testing accuracies
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Experiment	result: SENet

Before adversarial
training

After adversarial
training

Normal examples 99.97% 99.75%

Adversarial examples 48.32% 92.40%

Adversarial examples
+ median filter

82.00% 93.74%

Adversarial examples
+ mean filter

82.39% 93.76%

Adversarial examples
+ Gaussian filter

78.93% 83.72%

• Equipping	adversarial	training	with	median	filter	or	mean	filter	
increases	the	testing	accuracy	for	adversarial	examples	
compared	with	just	using	adversarial	training.

• While	adding	Gaussian	filter	decreases	the	testing	accuracy.

Testing accuracies
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Experiment	result: VGG

Before adversarial
training

After adversarial
training

Normal examples 99.99% 99.99%

Adversarial examples 37.06% 98.60%

Adversarial examples
+ median filter

92.72% 98.96%

Adversarial examples
+ mean filter

93.95% 99.24%

Adversarial examples
+ Gaussian filter

84.39% 87.22%

• We	can	see	a	similar	phenomenon	for	VGG

Testing accuracies
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Conclusion

• Both	adversarial	training	and	spatial	smoothing	
can	make	the	anti-spoofing models	robust	
enough	to	counter	adversarial	attacks.

• More	advanced	defense	methods	should	be	
adopted	to	improve	the	robustness	of	anti-
spoofing	models.
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