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Motivation



Background — Anti-spoofing

* A great number of automatic speaker verification (ASV)
models with high accuracy have been proposed.

 However, high-performance ASV may still be attacked by
spoofing audios

 These spoofing audios are audios generated by replay,
text-to-speech or voice conversion.
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Background — Anti-spoofing
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Background — Adversarial Attack
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 Address the vulnerability of anti-spoofing systems to
adversarial attacks and devise defense methods.



Adversarial attack



Attack — Finding Adversarial Example

Just like training a neural network,
but we optimize inputx rather
than network parameter 6
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Attack Method: Projected Gradient Descent

x* = arg max Dif f(f(x),f(%))
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An iterative method. Starting frominput x, = x,
then it is iteratively updated as:

X1 = clip(xy + @ - sign (Ve Diff(f(), f (1)),
fork=20,.. K—1

a is step size, K is the iteration number and the
clip(-) is the clipping function.



Defense



Defense Method 1: Spatial Smoothing
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Defense Method 1: Spatial Smoothing

Mean filter:x = -(a+b+c+d+e+f+g+h+i)

Gaussian filter:x = —(a + 2b + ¢ + 2d + 4e + 2f + g + 2h +1)
Median filter: x = the median of (a, b,c,d,e,f,g,h.i)
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Defense Method 2: Adversarial Training

Then we do the two steps iteratively

ldea:
Find and fix blind spots

Step 1: Find blind spots

Anti-
spoofing
Modelfy m !yl
. W .y
original examples adversarial examples
Step 2: Fix blind spots
M <
i Update Anti-
s L IRIES |
m x?%,y? ' > spoofing
. Modelfy




Experiment



Experiment setup

Dataset

LA partition of ASVspoof 2019 challenge which involves
synthesized audios from TTS and VC models.

Two different anti-spoofing models

SENet [Lai et al. 2019] and VGG [Zeinali et al. 2018]
Attack method

PGD

Two defense methods

Spatial smoothing and adversarial training



Experiment result: SENet

Testing accuracies

Before adversarial
training

Normal examples 99.97%

Adversarial examples  48.32%

* The SENet is subject to adversarial attacks.

e Listenerscan not tell the difference between
adversarialexample and original example.

Normal example adversarial example
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Experiment result: SENet

Testing accuracies

Before adversarial After adversarial
training training

Normal examples 99.97% 99.75%
Adversarial examples| 48.32% 92.40%
Adversarial examples' 82.00% 93.74%
+ median filter

Adversarial examples| 82.39% 93.76%
+ mean filter

Adversarial examples' 78.93% 83.72%
+ Gaussian filter

* All three kinds of filters have considerable performancein improvingthe
robustness of anti-spoofing models againstadversarial examples.
* Theimprovementof Gaussian filteris much less than the other two filters.
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e Adversarialtrainingimproves the robustness of anti-
spoofingmodels.



Experiment result: SENet

Testing accuracies

Before adversarial After adversarial
training training

Normal examples 99.97% 99.75%
Adversarial examples  48.32% 92.40%
Adversarial examples  82.00% 93.74%
+ median filter

Adversarial examples  82.39% 93.76%
+ mean filter

Adversarial examples  78.93% 83.72%
+ Gaussian filter

* Equippingadversarial training with median filter or mean filter
increases the testing accuracy for adversarial examples
compared with just using adversarial training.

 While adding Gaussian filter decreases the testing accuracy.
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Experiment result: VGG

Normal examples
Adversarial examples

Adversarial examples
+ median filter

Adversarial examples
+ mean filter

Adversarial examples
+ Gaussian filter

Testing accuracies

Before adversarial After adversarial
training training

99.99%
37.06%
92.72%

93.95%

84.39%

99.99%
98.60%
98.96%

99.24%

87.22%

* We can see a similarphenomenon for VGG
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Conclusion



Conclusion

Both adversarial training and spatial smoothing
can make the anti-spoofing models robust
enough to counter adversarial attacks.

More advanced defense methods should be
adopted to improve the robustness of anti-
spoofing models.



