

EXPOSURE INTERPOLATION VIA HYBRID LEARNING

Chaobing Zheng^{*1}, Zhengguo Li^{*2}, Yi Yang¹ and Shiqian Wu¹ ¹Wuhan University of Science and Technology, China ²Institute for Infocomm Research, Singapore

Motivation:

Deep learning is widely used in the field of image processing:

- •Low illumination image enhancement
- Super resolution

Denoising

•Hazing removal, rain removal

Then the question is coming:

Is conventional visual processing still needed? It's still needed, and it's important !

Taking exposure interpolation as an example to illustrate the importance of combining conventional and deep learning.

Exposure interpolation via hybrid learning

• Step 1: An *virtual exposed image* is generated from two large--ratio images of the same scene by conventional method.

• Step 2: Refinement of Intermediate Image via an lightweight residual learning (*LRL*) convolutional neural network.

Generation of Intermediate Image

Let x_1 and x_2 be two large-exposure-ratio images of the same scene. Their exposure times are $\triangle t_1$ and $\triangle t_2$, respectively. Without loss of generality, $\triangle t_1 > \triangle t_2$. A medium exposure image with exposure time as $\triangle t_3$ is supposed to be generated. $\triangle t_3$ is between $\triangle t_1$ and $\triangle t_2$, and it is defined as $\sqrt{\triangle t_1 \triangle t_2}$.

Assume the Camera Response Function (CRF) be F(). Let the intensity mapping functions (IMF) from x_1 to y_0 and from x_2 to y_0 be denoted as \wedge_{13} () and \wedge_{23} (), the functions can be expressed as:

$$\wedge_{13}(z) = F(\frac{\Delta t_3}{\Delta t_1} F^{-1}(z)); \wedge_{23}(z) = F(\frac{\Delta t_3}{\Delta t_2} F^{-1}(z))$$

the intermediate image Y_0 is generated:

$$y_{0}(p) = \frac{W_{1}(x_{1}(p)) \wedge_{13} (x_{1}(p)) + W_{2}(x_{2}(p)) \wedge_{23} (x_{2}(p))}{W_{1}(x_{1}(p)) + W_{2}(x_{2}(p))}$$

the weights are defined as:

$$\begin{split} & \textit{W}_{1}(z) = \begin{cases} 0; & \text{if } 0 \leq z < \xi_{\textit{L}} \\ 1 - 3h_{1}^{2}(z) + 2h_{1}^{3}(z); & \text{if } \xi_{\textit{L}} \leq z < 55 \ ; & h_{1}(z) = \frac{55 - z}{55 - \xi_{\textit{L}}} \\ 1; & \text{otherwise} \end{cases} \\ & \textit{W}_{2}(z) = \begin{cases} 1; & \text{if } 0 \leq z < 200 \\ 1 - 3h_{2}^{2}(z) + 2h_{2}^{3}(z); & \text{if } 200 \leq z < \xi_{\textit{U}} \\ 0; & \text{otherwise} \end{cases} ; \quad h_{2}(z) = \frac{z - 200}{\xi_{\textit{U}} - 200} \end{split}$$

Refinement of Intermediate Image via an LRL

Let the ground truth of the medium exposure image be denoted as $_{\it Y}$. $\tilde{\it y}(=y-y_0)$ is unmodeled information by the method.

 \tilde{y} is sparser than the original information y, and most values are likely to be zero or small. It can be expected that it is easier to use a neural network to approximate \tilde{y} than y.

Fig.1 (a) the ground truth images y_i (b) the intermediate images y_0 ; (c) unmodeled information $(y - y_0)$. The unmodeled information is usually small, many pixel values are 0's.

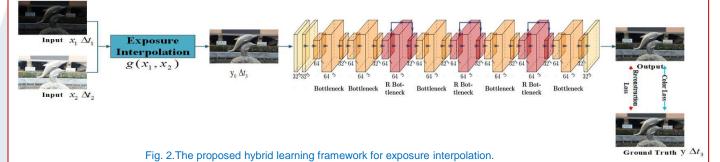
The unmodeled information \tilde{y} is learned from two images $\{y, y_0\}$; by minimizing the following loss function: L = Lr + wLc

Reconstruction Loss L_r:

$$L_r = \|y - y_0 - \tilde{f}(y_0)\|_2^2$$

color loss L_c :

$$L_c = \sum_p \angle (y(p), y_{0(p)} + \tilde{f}(y_0(p)))$$



EXPOSURE INTERPOLATION VIA HYBRID LEARNING

Chaobing Zheng^{*1}, Zhengguo Li^{*2}, Yi Yang¹ and Shiqian Wu¹ ¹Wuhan University of Science and Technology, China ²Institute for Infocomm Research, Singapore

Fig. 3.(a) The residual image (y-y₀); (b) The residual image (y-y₀- $\tilde{f}(y_0)$); The residual image (y-y₀) includes much more visible information than the residual image (y -y₀ - $\tilde{f}(y_0)$).

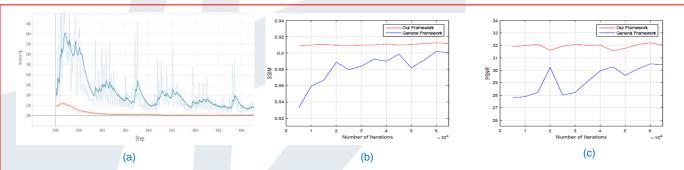


Fig. 4. (a) Comparison of training, the red is our hybrid learning framework, the blue is existing deep learning method; Comparison of (b) SSIM and (c) PSNR between our hybrid learning and existing deep learning method.

Fig. 5.(a) The ground truth images; (b) Results of our framework;

The proposed framework is firstly compared with the conventional method in [12] by using both structural similarity index (SSIM) and Peak Signal to Noise Ratio (PSNR).

Table 2. S	SSIM	and PSNR	of Two	Algorithm
------------	------	----------	--------	-----------

	SSIM	PSNR
Method in [12]	0.8289	22.1127
Proposed	0.9125	32.2080

The proposed framework is adopted to improve multiscale exposure fusion.

Table 3	. MEF-SSIM	Of Six	Different Algorithms
---------	------------	--------	----------------------

Table 5. MEF-SSIM OF SIX Different Algorithms						
	[13]	[15]	[14]	[16]	[12]	Ours
Set1	0.9658	0.9486	0.9425	0.9411	0.9629	0.9822
Set2	0.9681	0.9736	0.9671	0.9723	0.9782	0.9812
Set3	0.9816	0.9537	0.9588	0.9578	0.9673	0.9860
Set4	0.9385	0.9099	0.9148	0.9109	0.9449	0.9866
Set5	0.9340	0.9353	0.9374	0.9314	0.9436	0.9506
Set6	0.9347	0.8926	0.8981	0.9000	0.9410	0.9728
Set7	0.9458	0.9328	0.9287	0.9271	0.9548	0.9810
Set8	0.9588	0.9447	0.9610	0.9590	0.9706	0.9879
Avg	0.9534	0.9364	0.9385	0.9374	0.9579	0.9785