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Deep Learning

Artificial  
Intelligence

Machine  
Learning

Deep 
Learning

ML: machines learn how to complete a certain task

making computer artifacts improve their performance  
with respect to a certain performance criterion  
using example data or past experience, 
without requiring humans to program their behavior explicitly. 

Deep learning (DL) is a branch
of machine learning ⇒ Learn to
make own decisions

Structures algorithms in layers
⇒ Create an “artificial neural
network”
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Deep Learning in Communication

Conventional communication system is optimized in a block-wise
manner:
source/channel coding, modulation, demodulation, source/channel
decoding, equalization

Deep learning techniques have been applied to replace certain blocks:
channel coding/estimation

Individualized component-wise approach might not optimize the overall
system function!

Yuxin Lu (HKUST) Learning Cooperative Communication System ICASSP 2020 5 / 32



Deep Learning in Communication

Conventional communication system is optimized in a block-wise
manner:
source/channel coding, modulation, demodulation, source/channel
decoding, equalization

Deep learning techniques have been applied to replace certain blocks:
channel coding/estimation

Individualized component-wise approach might not optimize the overall
system function!

Yuxin Lu (HKUST) Learning Cooperative Communication System ICASSP 2020 5 / 32



Deep Learning in Communication

Conventional communication system is optimized in a block-wise
manner:
source/channel coding, modulation, demodulation, source/channel
decoding, equalization

Deep learning techniques have been applied to replace certain blocks:
channel coding/estimation

Individualized component-wise approach might not optimize the overall
system function!

Yuxin Lu (HKUST) Learning Cooperative Communication System ICASSP 2020 5 / 32



Deep Learning in Communication

Can we optimize the communication system in a holistic manner?

Joint design of the transmitter and receiver over the channel

Expand the optimization space

...

Yes. Communication Autoencoder!

Transmitter and receiver are represented by neural networks (NNs)

Promising results have been obtained
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Autoencoder

General autoencoder (AE) learns data structure to compress (top)

Encoder Decoder

Image, Text, … Image, Text, …

Encoder Decoder
00101101 
01101001 
11010001 

00101101 
01111001 
11010001 

Bit Stream

C
ha

nn
el

Bit Stream

Latent Vector

Distortion + Noise 
(Random)

Dirty Noisy 
Latent Vector

General autoencoder (top) v.s. Communication autoencoder. Figure Credit: Zhao, Vuran,
Guo and Scott

Communication AE learns the channel behavior to improve transmission

accuracy
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Autoencoder

Most existing applications are for point-to-point communications
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More Complicated Scenarios

Can we design an AE to optimize more complicated communication
scenarios?

Our focus: Relay-assisted cooperative communication system
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Existing Works for AE+Relay

Constellation design for two-way relay networks1

⇒ Focused on constellation optimization. No detection algorithm was
addressed

Our focus: Joint optimization of the constellation and detection
algorithm

Start with a one-way relay network

1
T.Matsumine, T.Koike-Akino, and Y.Wang, “Deep learning-based constellation optimization for physical network coding

in two-way relay networks,” arXiv preprint arXiv:1903.03713, Mar. 2019.
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System Model

S

R

D

hSR

hSD

hRD

MLD/Amplifier

MLD/MRC

DF/AF
First phase

Second phase

System model of a 3-node relay network.
Source (S), Relay (R), Destination (D)

R: half-duplex

Source message:
mS ∈ {1, 2, · · · , 2k}, encoded
as xS of length n

k/n bits/independent channel
uses
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System Model

First Phase:

ySJ =
√
EShSJxS + nSJ , J ∈ {R,D}, (1)

ES : average source transmit energy
hSJ : channel coefficient
nSJ : Gaussian noise vector CN (0, 2σ2SJI)

Second Phase:

yRD =
√
ERhRDxR + nRD, (2)

ER: average relay transmit energy
hRD: channel coefficient
nRD: Gaussian noise vector CN (0, 2σ2RDI)
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AF Relaying

AF relay node:

Symbol-wise amplifying operation xR = ySR√
PS |hSR|2+2σ2

SR

, xR ∈ xR,

ySR ∈ ySR, hSR ∈ hSR
Drawback: noise amplification ⇐ ySR =

√
EShSRxS + nSR

Destination:

Maximal-ratio combining (MRC)
Optimal in the context of AF
High complexity: O(n · 2k) per block
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DF Relaying

DF relay node:

Maximum-likelihood decoding (MLD)
xR = arg minx∈C ‖ySR − hSR

√
ESx‖2, where C is code book,

|C| = 2k.
Drawback: hard decision ⇒ information loss

Destination:

Near-optimal decoder (NOD)
arg maxxS∈C Pr(ySD|xS)

∑
xR∈C Pr(xS → xR) Pr(yRD|xR)

Near-optimal in the context of DF
High complexity: O(n · 2k · 2k) per block
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A typical AE

C
ha
nn
el

Transmitter Receiver

A typical AE for a point-to-point communication system

Input: one-hot encoding, e.g.,
{00, 01, 11, 10} 7→ {1000, 0100, 0010, 0001}

Output: softmax, i.e., φ(z)i = ezi∑k
j=1 e

zj
, i = 1, 2, . . . , k and

z = [z1, z2, . . . , zk] ∈ Rk

Yuxin Lu (HKUST) Learning Cooperative Communication System ICASSP 2020 17 / 32



A typical AE

C
ha
nn
el

Transmitter Receiver

A typical AE for a point-to-point communication system

Input: one-hot encoding, e.g.,
{00, 01, 11, 10} 7→ {1000, 0100, 0010, 0001}
Output: softmax, i.e., φ(z)i = ezi∑k

j=1 e
zj

, i = 1, 2, . . . , k and

z = [z1, z2, . . . , zk] ∈ Rk

Yuxin Lu (HKUST) Learning Cooperative Communication System ICASSP 2020 17 / 32



Proposed AE Structure

qR: soft probability
Advantage: eliminate noise amplification and hard decision
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Block diagram of the proposed AE for the cooperative communication system
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End-to-End Loss

Expected loss (a large number of data sets)

LSD(πS ,πR,πD) = EqS [L(qS ,qD)] (3)

Estimated through sampling

LSD(πS ,πR,πD) ,
1

B

B∑
i=1

L(qS,i,qD,i) (4)

B: batch size
{qS,i,qD,i}: the i-th input output pair of training sample
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Objective

(P1) min
πS ,πR,πD

LSD(πS ,πR,πD)
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Proposed AE

How to design the training algorithm?

A desirable way: directly train the whole model to minimize LSD

Experimental results Do Not demonstrate a favorable performance

A novel training algorithm is required!
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A Two-Stage Training Scheme

{πS ,πR,πD} ⇒ {πS ,πR,DE ,πR,EN ,πD} (5)

(P2)
First stage: min

πS ,πR,DE

LSR(πS ,πR,DE)

Second stage: min
πR,EN ,πD

LSD(πR,EN ,πD)
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Training SNR

Fixed SNR: γ

Mixed SNR: γ ∈ {γl, γl + ∆, · · · , γu −∆, γu}
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Training Algorithm

Algorithm 1 Two-stage training of the proposed AE model

Input Number of channel uses n, number of information bits (per message) k;
SNR parameters ∆, γl and γu
First Stage: training of the source-relay link

Construct a partial model for the source-relay link;
Randomly generate γSR ∈ {γl, γl + ∆, · · · , γu −∆, γu};
Train this partial model to minimize LSR(πS ,πR,DE);
Save EncoderS and DecoderR;

Second Stage: training of the entire network
Load EncoderS and DecoderR;
Incorporate the loaded components to construct the complete AE model;
Randomly generate γIJ ∈ {γl, γl + ∆, · · · , γu − ∆, γu} for (I, J) ∈
{(S,R), (R,D), (S,D)};
Train the proposed AE model to minimize LSD(πR,EN ,πD);
Obtain EncoderR and DecoderD.
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Learned Constellations
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Constellations of xS (red squares) and xR (blue triangles) with an
average power constraint for (n, k) = (2, 4)

xS :
APSK-like ⇒
Shaping gain

xR:
Irregular
Overlapping
Non-conventional
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BLER Performance
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BLER performance comparison of the proposed AE and the baseline
schemes for (n, k) = (7, 4)

⇒ Competitive BLER
performance
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Robustness under Non-Gaussian Channels
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Conclusion

Scheme
Noise

amplification
Hard

decision
Channel

estimation
Decoding complexity

per block
DF No Yes Yes O(n · 2k · 2k)

AF Yes No Yes O(n · 2k)

AE No No No O(n · 2k)

⇒ The proposed AE is a competitive alternative for the conventional
relaying techniques DF and AF

Future works:
A theoretical perspective and performance guarantee need to be provided!

Consider other relay networks, e.g., two-way, full-duplex, ...
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Take Away

Carefully designed training algorithm, loss functions, and structure
⇒ AE works

More general scenarios, Theoretical perspective
⇒ a longer journal version of this work :)
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Thanks!
Email: {ylubg}@ust.hk
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