

Extended Object Tracking using Hierarchical Truncation Measurement Model with Automotive Radar

Yuxuan Xia^{*}, Pu (Perry) Wang, Karl Berntorp, Toshiaki Koike-Akino, Hassan Mansour, Milutin Pajovic, **Petros Boufounos, Philip Orlik**

*Yuxuan Xia is a PhD student from Chalmers University of Technology, Gothenburg, Sweden. This work is done during his internship at MERL.

2020 International Conference on Acoustics, Speech, and Signal Processing

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL), Cambridge, Massachusetts, USA.

Topic: Extended Object Tracking

- *Point object* generates at most *one* measurement per time step. \bullet
- *Extended object* generates *multiple measurements* per time step.
- Recursive Bayesian estimation:

Object state of interest: position, kinematic state (velocity, heading, etc.) and extent state (shape and size).

Motivations

- Real-world automotive radar measurements are typically distributed around edges of rigid objects (e.g., vehicles) with a certain volume.
- Common spatial models: (a) contour model, (b) surface model, are generally not applicable.
- Surface-volume model (c) capture the spatial characteristics of automotive radar measurements.
- Random matrix approach is a prominent example of surface model; it assumes elliptical object shape and is simple to implement.
- Can we leverage on the random matrix approach and the spatial characteristics of automotive radar measurements?

Histogram of accumulated Radar point cloud in unit coordinates, extracted from nuScenes dataset.

Main Contributions

- A new surface-volume model, the Hierarchical Truncated Gaussian automotive radar measurements.
- the new surface-volume model.
- * Integrating the new surface-volume model into random-matrix approach

measurement model, that resembles the spatial characteristics of real-world

A new random matrix based extended object tracking algorithm tailored to

enables light-weight, realistic method implementable on automotive ECU.

ModelingDynamic model

- Location and kinematic state: vector *x*.
 - Constant velocity, Coordinated turn, etc.
 - Gaussian pdf: N(x; m, P).
- **Extent state**: SPD matrix X.
 - Elliptic shape.
 - Extent typically has constant size, rotating during turns.
 - Inverse-Wishart pdf: IW(X; v, V).

Object length and width obtained from eigen-decomposition of X.

Modeling Measurement model

- Noisy sensor detection *z* stems from noise-free measurement source *y*.
- Measurement source pdf: Truncated Gaussian p(y|x,X) = TN(y;h(x),X,D).
- Sensor noise pdf: Gaussian p(z | y) = N(z; y, R).
- Hierarchical Truncated Gaussian measurement likelihood:

$$p(z \mid x, X) = \int N(z; y, R) TN(y; h(x), X, D) dy.$$

• Setting truncation bounds to $+\infty$ to model **self**occlusion feature, i.e., partial-view measurements.

Pdfs of Truncated Gaussian and Hierarchical truncated Gaussian.

Problem Formulation and Solution

- **Objective**: Recursively calculate the posterior $p(x_{k|k}, X_{k|k} | Z^k) \approx N(x_{k|k}; m_{k|k}, P_{k|k})IW(X_{k|k}; v_{k|k}, V_{k|k}).$
- Challenges:
 - ► Measurement statistics are biased → Random Matrix approach: object states updated in a Kalman-filter-like fashion using mean/spread of Gaussian distributed measurements, may not yield good tracking performance.
 - Truncation bounds need to be estimated.
- **Proposed solution**:
 - Construct Gaussian-distributed pseudo-measurement statistics.
 - Formulate the estimation of the truncation bounds as an optimization problem.
 - Use an EM-type algorithm to *iteratively update object states and truncation bounds*.

Proposed Update Method Pseudo-measurement statistics

- Compute sample measurement mean \overline{z}_k and spread \overline{Z}_k .
- Compute *analytical* mean \overline{z}_k^c and spread \overline{Z}_k^c of Hierarchical Truncated Gaussian distribution $p(z_k^c \mid x_k, X_k) = N(z_k; y_k, R)TN(y_k; h(x_k), X_k, R^2 \setminus D_k)dy_k$
- Gaussian-distributed pseudo measurement mean/spread can be constructed as the *weighted sum* of the sample and the analytical mean/spread, respectively weighted by

$$c_{D_k} = \int_{D_k} TN(y_k; h(x_k), X_k, D_k) dy_k \text{ and}$$

$$1 - c_{D_k} = \int_{R_2 \setminus D_k} TN(y_k; h(x_k), X_k, R^2 \setminus D_k) dy_k.$$

#Pseudo measurements

Proposed Update Method Truncation bounds estimation

- **Objective:** Find the ML estimates of the truncation bounds
 - arg min **>** $a_k, b_k \quad z_k \in \mathbb{Z}$
- **Challenges:** Computational demanding for online estimation.
- **Proposed solution**:
 - expectation-maximization clustering.
 - finding algorithm.

$$-\log p(z_k | x_k, X_k).$$

Decompose the joint ML estimation problem into up to four *decoupled* ML estimation problems using

For each subproblem (a *univariate* constrained optimization problem), find the ML estimate using standard root-

Simulation Results Performance evaluation with ideal measurement model

- Rectangular object (4.7-m long and 1.8-m wide) moves following coordinated turn motion model.
- Object detections drawn from truncated uniform distribution and corrupted with Gaussian noise.
- Number of detections is Poisson distributed with mean 8.

Simulation Results Performance evaluation with measurement model mismatch

- Number of detections is Poisson distributed with mean 8.

Pdf of offline trained variational radar model

Object detections drawn from an offline trained variational Radar model (student's t mixture) [Scheel 2018].

Validation with MathWorks Measurements

- Tracking scenario and synthetic radar measurements generated using MathWorks Automated Driving Toolbox.
- Multiple long-range, medium-range and short-range automotive radars mounted on the ego vehicle.

Validation with In-house Hamster Lidar Data

- Hamster: Ackermann steering, velocity control, IMU, *camera (reference)*, Lidar, wheel encoders, GPS.

Lidar sensor is fixed and one Hamster car is moving. In general, Lidar measurements lie on the edges of the object.

Summary

- Proposed a new surface-volume model, the Hierarchical Truncated of real-world automotive radar measurements.
- tailored to the new measurement model.
- approach.

Gaussian measurement model, which resembles the spatial characteristics

Developed a new Random Matrix based extended object tracking algorithm

Simulation results validate and demonstrate the effectiveness of the proposed