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Topic: Extended Object Tracking
• Point object generates at most one measurement per time step.


• Extended object generates multiple measurements per time step.


• Object state of interest: position, kinematic state (velocity, heading, etc.) and extent state (shape and size).


• Recursive Bayesian estimation:
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• Real-world automotive radar measurements are 
typically distributed around edges of rigid objects 
(e.g., vehicles) with a certain volume.


• Common spatial models: (a) contour model, (b) 
surface model, are generally not applicable.


• Surface-volume model (c) capture the spatial 
characteristics of automotive radar measurements.


• Random matrix approach is a prominent example 
of surface model; it assumes elliptical object shape 
and is simple to implement.


• Can we leverage on the random matrix approach 
and the spatial characteristics of automotive radar 
measurements?

Motivations
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Histogram of accumulated Radar point cloud in unit 
coordinates, extracted from nuScenes dataset.
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Main Contributions

• A new surface-volume model, the Hierarchical Truncated Gaussian 
measurement model, that resembles the spatial characteristics of real-world 
automotive radar measurements. 


• A new random matrix based extended object tracking algorithm tailored to 
the new surface-volume model.


★ Integrating the new surface-volume model into random-matrix approach 
enables light-weight, realistic method implementable on automotive ECU.
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Dynamic model

• Location and kinematic state: vector .


‣ Constant velocity, Coordinated turn, etc.


‣ Gaussian pdf: .


• Extent state: SPD matrix .


‣ Elliptic shape.


‣ Extent typically has constant size,  
rotating during turns.


‣ Inverse-Wishart pdf: .

x

N(x; m, P)

X

IW(X; v, V)

Modeling
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Object length and width obtained  
from eigen-decomposition of .X
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Measurement model

• Noisy sensor detection  stems  
from noise-free measurement source .


• Measurement source pdf: Truncated Gaussian 
.


• Sensor noise pdf: Gaussian .


• Hierarchical Truncated Gaussian  
measurement likelihood: 
 

.


• Setting truncation bounds to  to model self-
occlusion feature, i.e., partial-view measurements. 

z
y

p(y |x, X) = TN(y; h(x), X, D)

p(z |y) = N(z; y, R)

p(z |x, X) = ∫ N(z; y, R)TN(y; h(x), X, D)dy

+∞

Modeling
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Pdfs of Truncated Gaussian and Hierarchical truncated Gaussian.

Object states x, X

Noise-free  
object-generated  

measurements 
Y = {yj}m

j=1

Noisy sensor 
measurements 
Z = {zj}m

j=1
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Problem Formulation and Solution
• Objective: Recursively calculate the posterior .


• Challenges: 


‣ Measurement statistics are biased  Random Matrix approach: object states updated in a Kalman-filter-like 
fashion using mean/spread of Gaussian distributed measurements, may not yield good tracking performance. 


‣ Truncation bounds need to be estimated.

• Proposed solution: 


‣ Construct Gaussian-distributed pseudo-measurement statistics.

‣ Formulate the estimation of the truncation bounds as an optimization problem.

‣ Use an EM-type algorithm to iteratively update object states and truncation bounds.

p(xk|k, Xk|k |Zk) ≈ N(xk|k; mk|k, Pk|k)IW(Xk|k; vk|k, Vk|k)

→
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Predicted states 
xk|k−1, Xk|k−1

Truncation bounds 
update

Object states 
update

Updated states 
xk|k, Xk|k

Iterative update

Measurements Zk

Pseudo 
measurement 
mean/spread
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Proposed Update Method
Pseudo-measurement statistics

• Compute sample measurement mean  and spread .


• Compute analytical mean  and spread  of Hierarchical 
Truncated Gaussian distribution

 

• Gaussian-distributed pseudo measurement mean/spread can 
be constructed as the weighted sum of the sample and the 
analytical mean/spread, respectively weighted by 

 and 

.

z̄k Z̄k

z̄c
k Z̄c

k

p(zc
k |xk, Xk) = ∫ N(zk; yk, R)TN(yk; h(xk), Xk, R2∖Dk)dyk

cDk
= ∫Dk

TN(yk; h(xk), Xk, Dk)dyk

1 − cDk
= ∫R2∖Dk

TN(yk; h(xk), Xk, R2∖Dk)dyk
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#Observed measurements
#Pseudo measurements

=
cDk

1 − cDk

.
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Proposed Update Method
Truncation bounds estimation

• Objective: Find the ML estimates of the truncation bounds


 .


• Challenges: Computational demanding for online estimation.


• Proposed solution: 


‣ Decompose the joint ML estimation problem into up to four decoupled ML estimation problems using 
expectation-maximization clustering.


‣ For each subproblem (a univariate constrained optimization problem), find the ML estimate using standard root-
finding algorithm.

arg min
ak,bk

∑
zk∈Zk

− log p(zk |xk, Xk)
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Simulation Results
Performance evaluation with ideal measurement model
• Rectangular object (4.7-m long and 1.8-m wide) moves following coordinated turn motion model.


• Object detections drawn from truncated uniform distribution and corrupted with Gaussian noise.


• Number of detections is Poisson distributed with mean 8.
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Simulation Results
Performance evaluation with measurement model mismatch
• Object detections drawn from an offline trained variational Radar model (student’s t mixture) [Scheel 2018].


• Number of detections is Poisson distributed with mean 8.
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Pdf of offline trained variational radar model
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Validation with MathWorks Measurements
• Tracking scenario and synthetic radar measurements generated using MathWorks Automated Driving Toolbox.


• Multiple long-range, medium-range and short-range automotive radars mounted on the ego vehicle.
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Validation with In-house Hamster Lidar Data
• Hamster: Ackermann steering, velocity control, IMU, camera (reference), Lidar, wheel encoders, GPS. 


• Lidar sensor is fixed and one Hamster car is moving. In general, Lidar measurements lie on the edges of the object.
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Summary

• Proposed a new surface-volume model, the Hierarchical Truncated 
Gaussian measurement model, which resembles the spatial characteristics 
of real-world automotive radar measurements. 


• Developed a new Random Matrix based extended object tracking algorithm 
tailored to the new measurement model.


• Simulation results validate and demonstrate the effectiveness of the proposed 
approach. 
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