

Mask-dependent Phase Estimation for Monaural Speaker Separation

Zhaoheng Ni, Michael I Mandel City University of New York

zni@gradcenter.cuny.edu

mim@sci.brooklyn.cuny.edu

Agenda

- Introduction
- Model Architecture
- Mask-dependent PIT Criterion
- Weighted Phase Losses
- Experiments
- Results

ICASSP2020 Barcelona

Introduction

- Speaker Separation refers to the task of isolating speech in a multi-talker environment.
- Estimating the real-valued Time-Frequency Mask is a successful way to separate the speech from the mixture.

Why Estimating Phase?

• Mask-based methods use the phase of the mixture speech fo iSTFT

$$\circ \quad y = \mathrm{iSTFT}(X \odot \hat{M})$$

• The phase error hence is unavoidable

Model Architecture

Wang, Zhong-Qiu, Jonathan Le Roux, and John R. Hershey. "Alternative objective functions for deep clustering." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

Phase is Difficult to Estimate

The clean spectrogram, the IRM, cosine, and sine of phase difference between clean and noisy STFT (sample utterance: cv/s2(mix)/011a010g 0.16366 40pc0204 -0.16366.wav)

Mask-Phase PIT Criterion

$$L_{\text{PIT, MP}} = \min_{\pi \in P} \sum_{c} \left(\left\| \hat{M}_{c} \odot |X| - \left| S_{\pi(c)} \right| \right\|_{F}^{1} - \sum_{t,f} \langle \hat{p}_{t,f}^{c}, p_{t,f}^{\pi(c)} \rangle \right)$$

Mc: magnitude mask for source c

- |X|: speech mixture magnitude
- |S|: clean speech magnitude
- p: phase of the spectrogram

 π : the permutation that has minimum (magnitude + phase) loss

Mask-dependent PIT Criterion

$$L_{\text{PIT, MD}} = \sum_{c} \left\| \hat{M}_{c} \odot |X| - \left| S_{\pi(c)} \right| \right\|_{F}^{1} - \sum_{c,t,f} \langle \hat{p}_{t,f}^{c}, p_{t,f}^{\pi(c)} \rangle,$$
$$\pi = \underset{\pi}{\operatorname{arg\,min}} \sum_{c} \left\| \hat{M}_{c} \odot |X| - \left| S_{\pi(c)} \right| \right\|_{F}^{1}$$

Mc: magnitude mask for source c

|X|: speech mixture magnitude

|S|: clean speech magnitude

p: phase of the spectrogram

 π : the permutation that has minimum **magnitude** loss

Different weights to Phase Loss

- Phase of mixture is more similar to the more dominating clean speech (information from the mixture)
- The pattern of the phase is more random if the phases of two clean speech are in opposite directions. (phase cancellation)
- The difficulties of phase estimation for different T-F regions are thus different

Different weights to Phase Loss

• Magnitude Weighted Loss Function (MWL)

$$_{\circ} \qquad L_{\mathrm{PI, MWL}} = -\sum_{c,t,f} \left(\gamma + M_{c,t,f}\right) \langle \hat{p}_{t,f}^{c}, p_{t,f}^{\pi(c)} \rangle$$

• Inverse Magnitude Weighted Loss Function (IMWL)

$$_{\circ} \qquad L_{\mathrm{PI, I-MWL}} = -\sum_{c,t,f} (\gamma + M_{\neg c,t,f}) \langle \hat{p}_{t,f}^{c}, p_{t,f}^{\pi(c)} \rangle$$

• Joint Weighted Loss Function (Joint)

$$_{\odot} \qquad L_{\text{PI, Joint}} = -\sum_{c,t,f} \langle \hat{p}_{t,f}^{c}, p_{t,f}^{\pi(c)} \rangle \sum_{i} M_{i,t,f}$$

Experiments

- Dataset: WSJ0-2mix
 - 20,000 mixtures for training
 - 5,000 mixtures for validation (closed speaker condition)
 - 5,000 mixtures for testing (open speaker condition)
- 4 BLSTM layers, 600-dimension for each direction, 0.3 dropout rate
- Batch size: 16. Each sample has 400 consecutive frames.
- Feature: log STFT, 256 window size, 64 hop size,
- Adam optimizer with 1e-3 learning rate
- 100 epochs, early stops if validation loss stops improving for 10 epochs
- Evaluation metric: Signal-to-Distortion Ratio (SDR)

Onssen Library

We put our implementations along with other published methods to onssen library.

https://github.com/speechLabBcCuny/onssen

More models and reproduced scores have been or will be added soon:

- DPCL
- Chimera (++)
- MISI, end2end MISI
- TasNet, Conv-TasNet, DPRNN
- FurcaNet, FurcaNeXt

Results

SDR	SI-SDR
10.5	-
11.5	11.2
11.8	11.5
12.9	12.6
-	12.6
-	12.8
-	11.9
15.6	15.3
	SDR 10.5 11.5 11.8 12.9 - - 15.6

Published SDR/SI-SDR improvements of different phase estimation methods on the open speaker condition (OSC) of the WSJ0-2mix dataset.

PIT Criterion	Mask Activation	Phase Loss	SDR
MP	ReLU	MWL	11.0
MP	Sigmoid	MWL	11.5
MD	Sigmoid	I-MWL	12.0
MD	Sigmoid	MWL	12.6
MD	Sigmoid	Joint	13.0
MD	Sigmoid	Joint, $\alpha = 0.5$	13.6

SDR improvements of the proposed method with different settings on the OSC of the WSJ0-2mix dataset. PIT criteria Mask+Phase (MP) and Mask-dependent (MD). Phase losses magnitude-weighted loss (MWL), inverse magnitude-weighted loss (I-MWL), and joint weighted loss (Joint).

References

- John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe, "Deep clustering: Discriminative embeddings for segmentation and separation," in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 31–35.
- Hakan Erdogan, John R Hershey, ShinjiWatanabe, and Jonathan Le Roux, "Phase-sensitive and recognition-boosted speech separation using deep recurrent neural networks," in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 708–712.
- Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen, "Permutation invariant training of deep models for speakerindependent multi-talker speech separation," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 241–245.
- Yi Luo, Zhuo Chen, John R Hershey, Jonathan Le Roux, and Nima Mesgarani, "Deep clustering and conventional networks for music separation: Stronger together," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 61–65.
- Zhong-Qiu Wang, Jonathan Le Roux, and John R Hershey, "Alternative objective functions for deep clustering," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 686–690.
- Donald S Williamson, Yuxuan Wang, and DeLiang Wang, "Complex ratio masking for monaural speech separation," IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), vol. 24, no. 3, pp. 483–492, 2016.
- Donald S Williamson and DeLiang Wang, "Speech dereverberation and denoising using complex ratio masks," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp. 5590–5594.
- David Gunawan and Deep Sen, "Iterative phase estimation for the synthesis of separated sources from single-channel mixtures," IEEE Signal Processing Letters, vol. 17, no. 5, pp. 421–424, 2010.
- Zhong-Qiu Wang, Jonathan Le Roux, DeLiang Wang, and John R Hershey, "End-to-end speech separation with unfolded iterative phase reconstruction," arXiv preprint arXiv:1804.10204, 2018.
- Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson, Avinatan Hassidim, William T Freeman, and Michael Rubinstein, "Looking to listen at the cocktail party: A speakerindependent audio-visual model for speech separation," arXiv preprint arXiv:1804.03619, 2018.
- Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman, "The conversation: Deep audio-visual speech enhancement," arXiv preprint arXiv:1804.04121, 2018.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
- Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer, "Automatic differentiation in pytorch," in NIPS-W, 2017

References

- Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto, "librosa: Audio and music signal analysis in python," in Proceedings of the 14th python in science conference, 2015, pp. 18–25.
- Colin Raffel, Brian McFee, Eric J Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang, Daniel PW Ellis, and C Colin Raffel, "mir eval: A transparent implementation of common mir metrics," in In Proceedings of the 15th International Society for Music Information Retrieval Conference, ISMIR. Citeseer, 2014.
- Jonathan Le Roux, Gordon Wichern, Shinji Watanabe, Andy Sarroff, and John R Hershey, "Phasebook and friends: Leveraging discrete representations for source separation," IEEE Journal of Selected Topics in Signal Processing, 2019.
- Zhong-Qiu Wang, Ke Tan, and DeLiang Wang, "Deep learning based phase reconstruction for speaker separation: A trigonometric perspective," in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 71–75.
- Jonathan Le Roux, JR Hershey, A Liutkus, F St"oter, STWisdom, and H Erdogan, "Sdr-half-baked or well done?," Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA, Tech. Rep, 2018.
- Yusuf Isik, Jonathan Le Roux, Zhuo Chen, Shinji Watanabe, and John R Hershey, "Single-channel multi-speaker separation using deep clustering," arXiv preprint arXiv:1607.02173, 2016.
- Yoshua Bengio, J'er'ome Louradour, Ronan Collobert, and Jason Weston, "Curriculum learning," in Proceedings of the 26th annual international conference on machine learning. ACM, 2009, pp. 41–48.
- **u** Yuzhou Liu and DeLiang Wang, "Divide and conquer: A deep casa approach to talker-independent monaural speaker separation," arXiv preprint arXiv:1904.11148, 2019.

Thank you very much!