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Introduction
● Speaker Separation refers to the task of isolating speech in a multi-talker environment.
● Estimating the real-valued Time-Frequency Mask is a successful way to separate the 

speech from the mixture.

3



Why Estimating Phase?
● Mask-based methods use the phase of the mixture speech fo iSTFT

○  

●  The phase error hence is unavoidable
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Model Architecture
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Phase is Difficult to Estimate

The clean spectrogram, the IRM, cosine, and sine of phase difference between clean and noisy STFT 
(sample utterance: cv/s2(mix)/011a010g_0.16366_40pc0204_-0.16366.wav)
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Mask-Phase PIT Criterion

Mc: magnitude mask for source c
|X|: speech mixture magnitude 
|S|: clean speech magnitude
p: phase of the spectrogram
𝜋: the permutation that has minimum (magnitude + phase) loss
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Mask-dependent PIT Criterion

Mc: magnitude mask for source c
|X|: speech mixture magnitude 
|S|: clean speech magnitude
p: phase of the spectrogram
𝜋: the permutation that has minimum magnitude loss
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Different weights to Phase Loss
● Phase of mixture is more similar to the more dominating clean speech 

(information from the mixture)
● The pattern of the phase is more random if the phases of two clean speech 

are in opposite directions. (phase cancellation)
● The difficulties of phase estimation for different T-F regions are thus different
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Different weights to Phase Loss
● Magnitude Weighted Loss Function (MWL)

○

● Inverse Magnitude Weighted Loss Function (IMWL)

○

● Joint Weighted Loss Function (Joint)

○
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Experiments
● Dataset: WSJ0-2mix

○ 20,000 mixtures for training
○ 5,000 mixtures for validation (closed speaker condition)
○ 5,000 mixtures for testing (open speaker condition)

● 4 BLSTM layers, 600-dimension for each direction, 0.3 dropout rate
● Batch size: 16. Each sample has 400 consecutive frames.
● Feature: log STFT, 256 window size, 64 hop size, 
● Adam optimizer with 1e-3 learning rate
● 100 epochs, early stops if validation loss stops improving for 10 epochs
● Evaluation metric: Signal-to-Distortion Ratio (SDR)

11



Onssen Library
We put our implementations along with other published methods to onssen library.

https://github.com/speechLabBcCuny/onssen

More models and reproduced scores have been or will be added soon:

● DPCL
● Chimera (++)
● MISI, end2end MISI
● TasNet, Conv-TasNet, DPRNN
● FurcaNet, FurcaNeXt
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Results

SDR improvements of the proposed method with different settings on 
the OSC of the WSJ0-2mix dataset. PIT criteria Mask+Phase (MP) 
and Mask-dependent (MD). Phase losses magnitude-weighted loss 
(MWL), inverse magnitude-weighted loss (I-MWL), and joint weighted 
loss (Joint).
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Published SDR/SI-SDR improvements of different phase
estimation methods on the open speaker condition (OSC) of the
WSJ0-2mix dataset.
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Thank you very much!
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