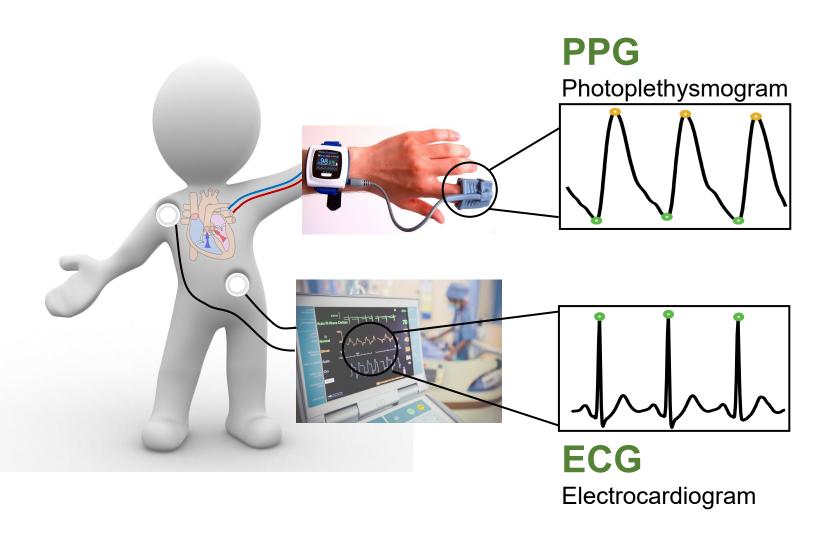


Cross-domain Joint Dictionary Learning (XDJDL) for ECG Reconstruction from PPG

Xin Tian, Qiang Zhu, Yuenan Li, Min Wu Department of Electrical and Computer Engineering, University of Maryland, College Park

Why ECG reconstruction from PPG: Benefits & Physiological model



Optical sensing

Less direct cardiac information

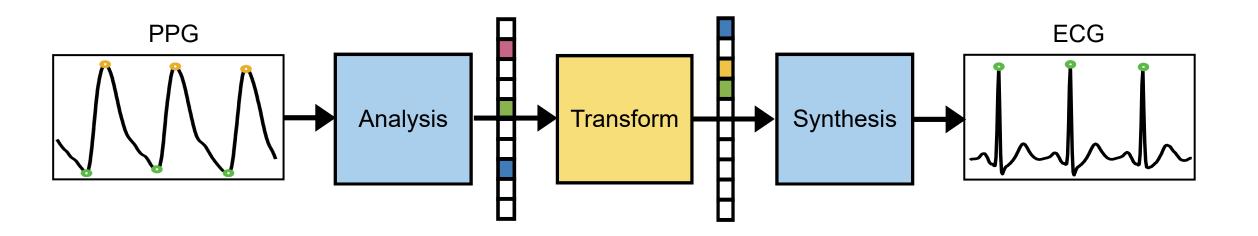
More user-friendly and cheaper

Bio-electrical signal

Clinical gold standard

Restrictive; uncomfortable

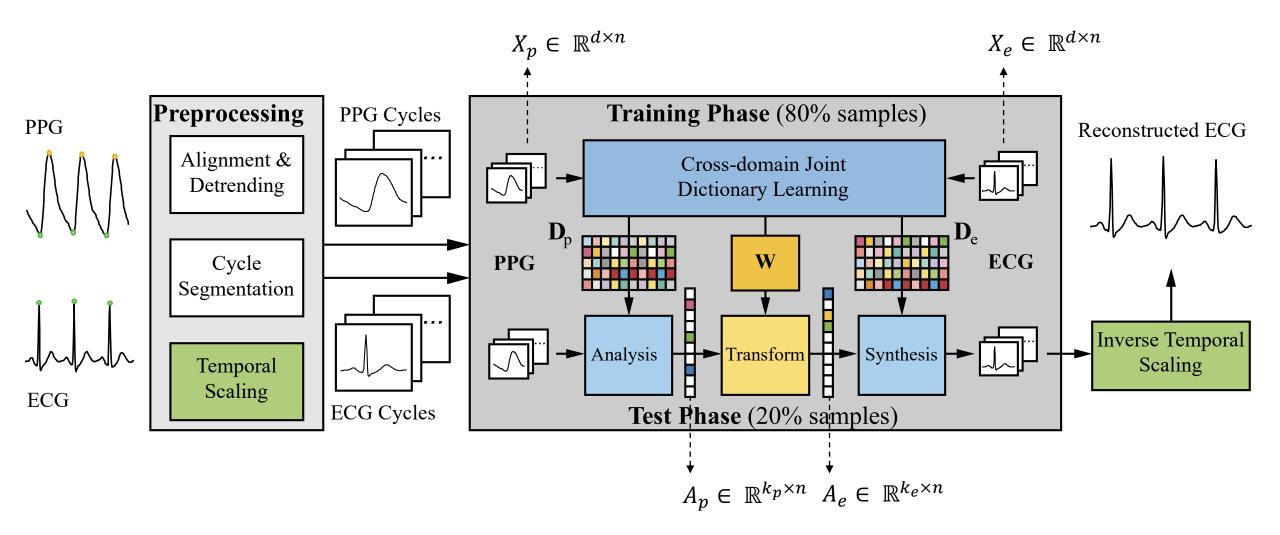
Why joint dictionary learning



- More representative and adaptive than universal dictionary, e.g. DCT [1]
- Better explain the physiological nature between PPG and ECG

[1] Q. Zhu, et al. "ECG reconstruction via PPG: A pilot study," IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2019.

Framework Overview



Mathematical model

$$\min_{\substack{\mathbf{D}_{e},\mathbf{A}_{e},\mathbf{D}_{p},\\ \mathbf{A}_{p},\mathbf{W}}} \left[\|\mathbf{X}_{e}-\mathbf{D}_{e}\mathbf{A}_{e}\|_{F}^{2} + \alpha \|\mathbf{X}_{p}-\mathbf{D}_{p}\mathbf{A}_{p}\|_{F}^{2} \right] + \beta \|\mathbf{A}_{e}-\mathbf{W}\mathbf{A}_{p}\|_{F}^{2} \\ \text{Mapping fidelity term} \right] \text{ s.t.} \left[\|\mathbf{a}_{p,j}\|_{0} \leq t_{p}, \quad j=1,...,n \right]$$

In matrix form,

$$\mathbf{X} \qquad D \qquad A$$

$$\mathbf{D}_{e,\mathbf{A}_{e},\mathbf{D}_{p}} \parallel \begin{pmatrix} \mathbf{X}_{e} \\ \sqrt{\alpha} \mathbf{X}_{p} \\ \mathbf{0} \end{pmatrix} - \begin{pmatrix} \mathbf{D}_{e} & \mathbf{0} \\ \mathbf{0} & \sqrt{\alpha} \mathbf{D}_{p} \\ -\sqrt{\beta} \mathbf{I} & \sqrt{\beta} \mathbf{W} \end{pmatrix} \begin{pmatrix} \mathbf{A}_{e} \\ \mathbf{A}_{p} \end{pmatrix} \parallel_{F}^{2}$$

$$s.t. ||\mathbf{a}_{e,j}||_{0} \leq t_{e}, \quad j = 1, ..., n.$$

$$||\mathbf{a}_{p,j}||_{0} \leq t_{p}, \quad j = 1, ..., n.$$

Optimization

Step 1: sparse coding

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_{F}^{2},$$
s.t. $\|\mathbf{a}_{+,j}\|_{0} \le t_{e}, \quad j = 1, ..., n$

$$\|\mathbf{a}_{-,j}\|_{0} \le t_{p}, \quad j = 1, ..., n$$

Step1-1 [1]:

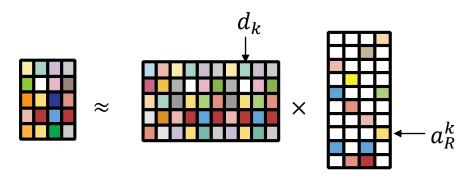
$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_F^2$$
s.t. $\|\mathbf{a}_j\|_0 \le t_e + t_p, \quad j = 1, ..., n$

Step1-2:

Modify the non-zero entries to ensure the local sparsity constraints

[1] Orthogonal matching pursuit (OMP) is applied here for sparse coding. Tropp, Joel A., and Anna C. Gilbert. "Signal recovery from random measurements via orthogonal matching pursuit." IEEE Transactions on information theory (2007)

Step 2: dictionary update



where
$$X = \begin{pmatrix} X_e \\ \sqrt{\alpha} X_p \\ 0 \end{pmatrix}$$
, $D = \begin{pmatrix} D_e & 0 \\ 0 & \sqrt{\alpha} D_p \\ -\sqrt{\beta} I \sqrt{\beta} W \end{pmatrix}$, $A = \begin{pmatrix} A_e \\ A_p \end{pmatrix}$

Update the kth atom in dictionary using SVD [2]

$$\mathbf{R}_k \triangleq \mathbf{X} - \sum_{j \neq k} \mathbf{d}_j \mathbf{a}_R^j \quad \Rightarrow \quad \mathbf{d}_k = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$$

$$\mathbf{d}_k = \mathbf{U}(:, 1)$$

$$\mathbf{a}_R^k = \mathbf{\Sigma}(1, 1) \mathbf{V}^{\mathbf{T}}(1, :)$$

[2] M Aharon, M Elad, A Bruckstein. "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation". IEEE Transactions on Signal Processing(2006)

Optimization

Step 1: sparse coding

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_{F}^{2},$$
s.t. $\|\mathbf{a}_{+,j}\|_{0} \le t_{e}, \quad j = 1, ..., n$

$$\|\mathbf{a}_{-,j}\|_{0} \le t_{p}, \quad j = 1, ..., n$$

Step1-1 [1]:

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_F^2$$
s.t. $\|\mathbf{a}_j\|_0 \le t_e + t_p, \quad j = 1, ..., n$

Step1-2:

Modify the non-zero entries to ensure the local sparsity constraints

Step 2: dictionary update

Step 2-1:

$$<\mathbf{D}_{e}^{*}, \mathbf{A}_{e}^{*}> = \underset{\mathbf{D}_{e}, \mathbf{A}_{e}}{\operatorname{argmin}} \left\| \mathbf{X}_{e} - \mathbf{D}_{e} \mathbf{A}_{e} \right\|_{F}^{2}$$

Step 2-2:

$$<\mathbf{D}_{p}^{*}, \mathbf{A}_{p}^{*}, \mathbf{W}^{*}> = \underset{\mathbf{D}_{p}, \mathbf{A}_{p}, \mathbf{W}}{\operatorname{argmin}} \left\| \begin{pmatrix} \sqrt{\alpha} \mathbf{X}_{p} \\ \sqrt{\beta} \mathbf{A}_{e}^{*} \end{pmatrix} - \begin{pmatrix} \sqrt{\alpha} \mathbf{D}_{p} \\ \sqrt{\beta} \mathbf{W} \end{pmatrix} \mathbf{A}_{p} \right\|_{F}^{2}$$

[1] Orthogonal matching pursuit (OMP) is applied here for sparse coding.

Tropp, Joel A., and Anna C. Gilbert. "Signal recovery from random measurements via orthogonal matching pursuit." IEEE Transactions on information theory (2007)

Experimental results: Dataset composition

Mini-MIMIC (selected data from MIMIC III database [1])

ICU data with various ECG morphologies

Cardiovascular diseases		# patients	# cycles	
Congestive Heart Failure		7	7075 (20.6%)	
Myocardial Infarction	ST-segment Elevated	3	2962(8.7%)	
(MI)	Non-ST-segment Elevated	4	4144(12.1%)	
Hypotension		7	8281(24.2%)	
Coronary Artery Disease		12	11781(34.4%)	
Total		33	34243(100%)	

CHF: congestive heart failure

STEMI: ST-segment elevated Myocardial infarction

NSTEMI: non-ST segment elevated Myocardial infarction

HYPO: hypotension

CAD: coronary artery disease

[1] J., Alistair EW, et al. "MIMIC-III, a freely accessible critical care database." Scientific data, 2016.

Quantitative results: XDJDL vs DCT

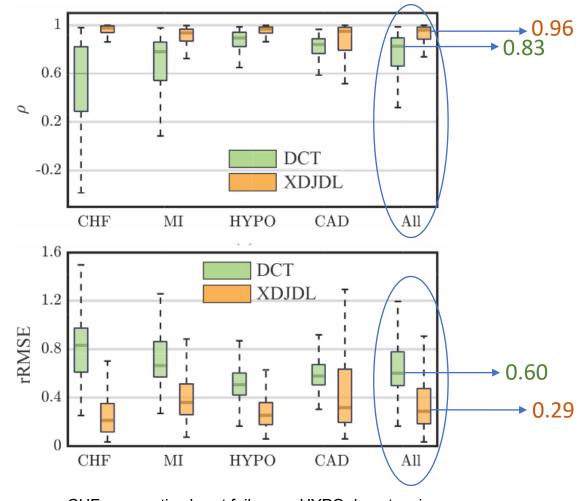
Pearson correlation coefficient

$$\rho = \frac{(\mathbf{y}_{\text{test}} - \bar{y}_{\text{test}})^{\text{T}} (\hat{\mathbf{y}}_{\text{test}} - \bar{\hat{y}}_{\text{test}})}{\|\mathbf{y}_{\text{test}} - \bar{y}_{\text{test}}\|_{2} \|\hat{\mathbf{y}}_{\text{test}} - \bar{\hat{y}}_{\text{test}}\|_{2}}$$

Relative root mean square error

$$rRMSE = \frac{\|\mathbf{y}_{test} - \hat{\mathbf{y}}_{test}\|_{2}}{\|\mathbf{y}_{test}\|_{2}}$$

Reconstruction Scheme		DCT [1]	XDJDL (proposed)	
ρ	$\hat{\mu}$	0.71	0.88	
	$\hat{\sigma}$	0.31	0.23	
$oxed{rRMSE}$	$\hat{\mu}$	0.67	0.39	
	$\hat{\sigma}$	0.26	0.31	



CHF: congestive heart failure MI: Myocardial infarction

HYPO: hypotension

CAD: coronary artery disease

[1] Q. Zhu, et al. "ECG reconstruction via PPG: A pilot study," BHI, 2019.

Experimental results: Visualization for Reconstruction Performance



Pearson correlation coefficient:

DCT: 0.19

XDJDL: 0.94

Pearson correlation coefficient:

DCT: 0.46

XDJDL: 0.87

More models for comparison

Model	Sparsity constraint	Linear mapping between codes?	Optimization methods	
DCT [1]	NA	~	ADMM	
Cross-view projective dictionary learning (CPDL) [2]	NA	×	ADMM	
Super resolution via sparse representation (ScSR) [3]	L1	×	LARS + MOD	
Semi-coupled dictionary learning (SCDL) [4]	L1	✓	LARS + MOD	
Coupled K-SVD dictionary training (CDL) [5]	L0	X	OMP + SVD	
Cross-domain joint dictionary learning (XDJDL) (proposed)	L0	✓	OMP + SVD	

[1] Q. Zhu, et al. "ECG reconstruction via PPG: A pilot study," BHI, 2019.

[2] S. Li, et al. "Cross-view projective dictionary learning for person re-identification." *IJCAI*, 2015.

[3] J. Yang, et al. "Image super-resolution via sparse representation". *IEEE Transactions on Image Processing*, 2010.

[4] S. Wang, et al. "Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis." *CVPR*, 2012.

[5] J. Xu, et al. "Coupled K-SVD dictionary training for super-resolution." ICIP, 2014.

ADMM: alternating direction method

of multipliers

LARS: least angle regression

MOD: method of directions

OMP: orthogonal matching pursuit SVD: singular vector decomposition

Quantitative results: More models for comparison

Reconstruction Scheme	ρ			rRMSE		
	$\hat{\mu}$	$\hat{\sigma}$	med	$\hat{\mu}$	$\hat{\sigma}$	med
DCT [1]	0.71	0.31	0.83	0.67	0.26	0.60
CPDL [2]	0.74	0.31	0.85	0.63	0.35	0.56
ScSR [3]	0.82	0.23	0.89	0.54	0.21	0.52
SCDL [4]	0.83	0.21	0.89	0.52	0.22	0.49
CDL [5]	0.85	0.25	0.95	0.49	0.51	0.34
XDJDL (proposed)	0.88	0.23	0.96	0.39	0.31	0.29

^[1] Q. Zhu, et al. "ECG reconstruction via PPG: A pilot study," BHI, 2019.

^[2] S. Li, et al. "Cross-view projective dictionary learning for person re-identification." IJCAI, 2015.

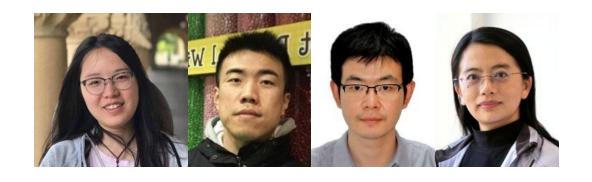
^[3] J. Yang, et al. "Image super-resolution via sparse representation". IEEE Transactions on Image Processing, 2010.

^[4] S. Wang, et al. "Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis." CVPR, 2012.

^[5] J. Xu, et al. "Coupled K-SVD dictionary training for super-resolution." ICIP, 2014.

Conclusion and Perspectives

- Proposed the cross-domain joint dictionary learning model
- Improved ECG reconstruction accuracy from PPG on Mini-MIMIC
- Long-term & user-friendly ECG monitoring via PPG sensor
- (future work) Broader range of subjects with improved accuracy



Cross-domain Joint Dictionary Learning (XDJDL) for ECG Reconstruction from PPG

Xin Tian, Qiang Zhu, Yuenan Li, Min Wu Department of Electrical and Computer Engineering, University of Maryland, College Park