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Introduction
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Many acoustic features has been explored for mon-
aural speech enhancement.

Speech 
Enhancement

Voice
Conversation

Significant process has been achieved by using the
phonetic information via phonetic posteriorgram.

Cool!!! Inspired by the progress, we attempt to
introduce the phonetic information into monaural
speech enhancement by developing a phoneme-
aware network.

Advantages
l Phonetic information provides more stationary cues than acoustic features.
l The solution space of an enhanced speech will be restricted given the

phonetic posteriorgram as the condition.



Phonetic posteriorgram (PPG)
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Basic Phoneme-Aware Network
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Context Aggregation with dilated convolutions
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Involving PPG prediction
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Iterative prediction and training algorithm
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Correcting noisy PPG (CNP) vs. predicting 
ground-truth PPG from scratch (PGP)
} In PAN-b+PR, the PPG predictor is trained to estimate the ground-

truth PPG from scratch, which can be more inaccurate than the noisy
PPG at the beginning of training. (PGP)

} We train the PPG predictor to learn how to correct the noisy PPG 𝑄
in log-scale (CNP):
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𝑃 log &𝑃 = PR *𝑆, 𝑄 + 𝑃 log𝑄

} Combining the loss function of PPG predictor 𝐿/0 and the above 
equation, we get:

min 𝐿MN =min 𝐾𝐿(𝑃||𝑄) −9PR *𝑆, 𝑄



Experimental settings
} Clean speech corpus

} 98,991 mandarin utterances from 100 males and 100 females
} 95 males and 95 females are randomly selected for training
} 10 speakers are used for test.

} 5 noises from NOISEX-92 are used for training
} factory1, Speech Shaped Noise, engine, optroom, babble

} 4 noises are used for test
} buccaneer1, buccaneer2, factory2 from NOISEX-92
} Cafeteria from DEMAND

} 4 SNR levels are trained and evaluated
} -5, 0, 5, 10 dB 
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Experimental settings
} Optimizer: Adam with the learning rate of 0.001
} Acoustic model for PPG extraction:

} A deep feed-forward sequential memory network (DeepFSMN) trained 
with a 5,000-hour mandarin speech dataset.

} 10 DeepFSMN blocks with 512 hidden units in each block
} The DeepFSMN is trained to model 244 senones by minimizing the 

cross-entropy (CE) loss.

} Evaluation settings:
} Metrics: short-time objective intelligibility (STOI), perceptual evaluation 

of speech quality (PESQ) and character error rate (CER) of robust ASR
} The ASR system is trained with a 20,000-hour mandarin speech dataset 

collected from 20 domains resulting in 5.71% CER on clean speech.
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Experimental results
} The effect of phonetic information
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Experimental results
} Comparisons of different architectures and iterations
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Experimental results
} Correcting noisy PPG (CNP) vs. predicting ground-truth 

PPG from scratch (PGP)
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Experimental results
} Independent front-end processing for ASR

} Large-scale training with about 1,000 noises from MUSAN dataset
} 10 untrained noises are used for test
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Experimental results
} Independent front-end processing for ASR
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Conclusions
} We proposed the PAN to utilize the phonetic information

for monaural speech enhancement.
} An iterative algorithm is proposed to train the PAN and

PPG predictor.
} We find that correcting the noisy PPG is a better choice

than predicting the ground-truth PPG from scratch.
} Experimental results show that utilizing the phonetic

information can consistently improve the enhancement
performance in terms of STOI, PESQ and CER.
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Thanks for your attention!
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