

Multi-level Deep Neural Network Adaptation for Speaker Verification Using MMD and Consistency Regularization

Weiwei Lin¹, Man-Wai MAK¹, Na Li², Dan Su² and Dong Yu²

¹Dept. of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Hong Kong SAR of China

²Tencent Al Lab, China

ICASSP'20 4-8 May 2020

Contents

- 1. Domain Mismatch in Speaker Recognition
- 2. Domain Adaptation
- 3. MMD-Based Speaker Embedding Adaptation
- 4. Experiments and Results
- 5. Conclusions

Domain Mismatch

- When training data and test data of speaker recognition systems have a severe mismatch, the performance degrades rapidly.
- The mismatch can be caused by languages, channels, noises, and genders.
- Collecting more data to retrain the system is time-consuming and computationally-expensive.
- We need to **adapt existing systems** to new environments or create a **domain-invariant** feature space.

Domain Adaptation

- Can be performed during system training by
 - 1. making the speaker embedding network domain-invariant
 - 2. transforming the speaker embedding to domain-invariant space
 - adapting the PLDA model

Speaker-embedding Adaptation

- Goal: Train the speaker embedding network to produce domain-invariant feature vectors.
- Minimize domain discrepancy at both frame-level and utterance-level
- Apply consistency regularization to leverage unlabeled targetdomain data.

Speaker Embedding Adaptation

Maximum Mean Discrepancy (MMD)

- MMD is a nonparametric approach to measuring the distance between two distributions.
- The basic idea is to non-linearly map the input to an RKHS and compute the distance between the means of the two distributions in that space.

Maximum Mean Discrepancy (MMD)

$$\mathcal{D}_{\text{MMD}} = \left\| \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i) - \frac{1}{M} \sum_{j=1}^{M} \phi(\mathbf{y}_j) \right\|^2$$

$$= \frac{1}{N^2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \phi(\mathbf{x}_i)^\mathsf{T} \phi(\mathbf{x}_{i'}) - \frac{2}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} \phi(\mathbf{x}_i)^\mathsf{T} \phi(\mathbf{y}_j)$$

$$+ \frac{1}{M^2} \sum_{j=1}^{M} \sum_{j'=1}^{M} \phi(\mathbf{y}_j)^{\mathsf{T}} \phi(\mathbf{y}_{j'}).$$

$$= \frac{1}{N^2} \sum_{i=1}^{N} \sum_{i'=1}^{N} k(\mathbf{x}_i, \mathbf{x}_{i'}) - \frac{2}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} k(\mathbf{x}_i, \mathbf{y}_j) + \frac{1}{M^2} \sum_{j=1}^{M} \sum_{j'=1}^{M} k(\mathbf{y}_j, \mathbf{y}_{j'})$$

Maximum Mean Discrepancy (MMD)

Quadratic kernel:

$$k(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x})^{\mathsf{T}} \phi(\mathbf{y}) = (\mathbf{x}^{\mathsf{T}} \mathbf{y} + c)^2$$

$$\mathcal{D}_{\text{MMD}} = 2c \left\| \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i - \frac{1}{M} \sum_{j=1}^{M} \mathbf{y}_j \right\|^2 + \left\| \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}} - \frac{1}{M} \sum_{j=1}^{M} \mathbf{y}_j \mathbf{y}_j^{\mathsf{T}} \right\|_F^2$$

- With a quadratic kernel, MMD can measure the distance between two distributions up to their second order stats.
- Multi-RBF kernels:

$$k(\mathbf{x}, \mathbf{y}) = \sum_{q=1}^{K} \exp\left(-\frac{1}{2\sigma_q^2} \|\mathbf{x} - \mathbf{y}\|^2\right)$$

Consistency Regularization

- Exploit the unlabeled data for domain adaptation by applying data augmentation on them.
- Consistency training is to regularize a network such that the predictions are consistent even if the network's input is subjected to noise perturbation.
- Achieved by minimizing the KL divergence

$$\mathbb{E}_{q(\hat{\mathbf{x}}_{\text{unlab}}|\mathbf{x}_{\text{unlab}})}[\text{KL}(p_{\Theta}(y|\mathbf{x}_{\text{unlab}})||p_{\Theta}(y|\hat{\mathbf{x}}_{\text{unlab}}))]$$

where q() is a data augmentation transformation, e.g., adding noise or reverb effect.

 We propose minimizing the discrepancy between the embeddings produced by the clean data and the embeddings produced by the augmented data.

Consistency Regularization

 Achieved by minimizing the MMD between target-domain data and unlabeled augmented data:

$$\mathcal{D}(\mathcal{H}_{t}^{7}, \hat{\mathcal{H}}_{t}^{7}) = \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{i'=1}^{N} k(\mathbf{h}_{i}^{7}, \mathbf{h}_{i'}^{7})$$

$$- \frac{2}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} k(\mathbf{h}_{i}^{7}, \hat{\mathbf{h}}_{j}^{7}) + \frac{1}{M^{2}} \sum_{j=1}^{M} \sum_{j'=1}^{M} k(\hat{\mathbf{h}}_{j}^{7}, \hat{\mathbf{h}}_{j'}^{7})$$

Experiments

- Training data for DNN and PLDA: 4808 speakers from SRE04-10 and Switchboard
- Consistency Regularization: SRE16 and SRE18 unlabeled
- Test data: SRE16-eval and SRE18-eval-cmn2
- Kernel of MMD: 19 RBF kernels with width ranges from $2^{-8}\sigma_m$ to $2^8\sigma_m$, where σ_m is the median pairwise distance from training data.
- Acoustic vectors: 23-dim MFCC with mean norm
- VAD: Kaldi's energy-based VAD
- PLDA adaptation and CORAL: SRE16 and SRE18 unlabeled
- Hyperparameters for DNN Objective: $\alpha = \beta = \lambda = 1$

Experiments

Experiments

DNN Architecture

Layer	Kernel	$ $ Channel_in \times Channel_out
Conv1	5,1,1	23 × 512
Conv2	3,1,2	512×512
Conv3	3,1,3	512×512
Conv4	1,1,1	512×512
Conv5	1,1,1	512×1536
Statistics pooling		1536×3072
FC6	_	3072×512
FC7	_	512×512
Am-softmax	_	512 × N

$$\mathcal{L}_{AMS} = -\frac{1}{n} \sum_{i=1}^{n} \log \frac{e^{s \cdot (\mathbf{W}_{y_i}^T \mathbf{x}_i - m)}}{e^{s \cdot (\mathbf{W}_{y_i}^T \mathbf{x}_i - m)} + \sum_{j=1, j \neq y_i}^{c} e^{s \mathbf{W}_{j}^T \mathbf{x}_i}}$$

Results

	SRI	E16	SRE18		
Adapt Method	EER (%)	minDCF	EER(%)	minDCF	
WGAN [12]	13.25	0.899	9.59	0.652	
Sup. WGAN [12]	9.59	0.746	8.88	0.619	
LSGAN [21]	11.74	-	-	-	
Our DNN Adapt.	9.03	0.585	8.33	0.520	

- All the results are without backend adaptation.
- Our DNN adaptation performs significantly better than the previously proposed methods.

Results

	SR	E16	SRE18		
Adapt Method	EER(%)	minDCF	EER(%)	minDCF	
Our DNN Adapt.	9.03	0.585	8.33	0.520	
CORAL Adapt.	8.49	0.560	8.74	0.553	
PLDA Adapt.	8.55	0.556	8.88	0.563	
Ours+CORAL Adapt.	8.28	0.541	8.13	0.519	
Ours+PLDA Adapt.	8.29	0.546	8.09	0.521	

• Combining the proposed method with backend adaptation further improves the performance.

Results

			SRE16		SRE18	
Layer 7	Layer 6	Consis.	EER(%)	DCF	EER(%)	DCF
×	×	×	12.02	0.990	11.59	0.72
\checkmark	×	×	9.79	0.621	9.08	0.580
\checkmark	\checkmark	×	9.63	0.606	8.77	0.555
\checkmark	\checkmark	\checkmark	9.03	0.585	8.33	0.520

- Multi-level adaptation significantly improves the performance in both SRE16 and SRE18.
- Consistency regularization also helps.

Conclusions

- Domain mismatch loss can be applied at both both frame-level and utterance-level
- Apply MMD at frame level performs significantly better than at utterance-level alone
- Data augmentation can be utilized in the unlabeled targetdomain through consistency regularization.

Utterance- and Frame-level MMD

Utterance-level MMD

Frame-level MMD