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Domain Mismatch

 When training data and test data of speaker recognition
systems have a severe mismatch, the performance degrades
rapidly.

 The mismatch can be caused by languages, channels, noises,
and genders.

* Collecting more data to retrain the system is time-consuming
and computationally-expensive.

 We need to adapt existing systems to new environments or
create a domain-invariant feature space.
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Domain Adaptation

e (Can be performed during system training by
1. making the speaker embedding network domain-invariant
2. transforming the speaker embedding to domain-invariant space

3. adapting the PLDA model
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Speaker-embedding Adaptation

* @Goal: Train the speaker embedding network to produce
domain-invariant feature vectors.

* Minimize domain discrepancy at both frame-level and
utterance-level

* Apply consistency regularization to leverage unlabeled target-
domain data.
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Speaker Embedding Adaptation
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Maximum Mean Discrepancy (MMD)

* MMD is a nonparametric approach to measuring the distance
between two distributions.

 The basicidea is to non-linearly map the input to an RKHS and
compute the distance between the means of the two
distributions in that space.

% Z, P(x;)

Reproducing kernel Hilbert space
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Maximum Mean Discrepancy (MMD)

| N M
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Mammum Mean Discrepancy (MMD)

e (Quadratic kernel:

k(x,y) = ¢(x) o(y) = (x'y +¢)?

| N | M | | M
— — . PR —— — . T — — T
Dyivp = 2¢ N ;:1 Xi— 77 ;:1: Yil| T ;:1 XiXj = 3o ;:1: YiY;

* With a quadratic kernel, MMD can measure the distance
between two distributions up to their second order stats.

e Multi-RBF kernels:

Zexp Ix -y’
2(72

10



&

I'HE HONG KONG
POLYTECHNIC UNIVERSITY

e B TR B

Consistency Regularization

Exploit the unlabeled data for domain adaptation by applying
data augmentation on them.

Consistency training is to regularize a network such that the
predictions are consistent even if the network’s input is
subjected to noise perturbation.

Achieved by minimizing the KL divergence

E [KL(I)(-) (y|xunluh) | |;I)(—) (ylf(unlub) )]
(I(Xunluh | Xunlab )
where g( ) is a data augmentation transformation, e.g., adding
noise or reverb effect.

We propose minimizing the discrepancy between the
embeddings produced by the clean data and the embeddings
produced by the augmented data.

11
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Consistency Regularization

* Achieved by minimizing the MMD between target-domain data
and unlabeled augmented data:
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Experiments

* Training data for DNN and PLDA: 4808 speakers from SRE04-10
and Switchboard

* Consistency Regularization: SRE16 and SRE18 unlabeled
* Test data: SRE16-eval and SRE18-eval-cmn2

* Kernel of MMD: 19 RBF kernels with width ranges from 27 3¢,
to 280,,,, where g, is the median pairwise distance from
training data.

* Acoustic vectors: 23-dim MFCC with mean norm

* VAD: Kaldi’s energy-based VAD

* PLDA adaptation and CORAL: SRE16 and SRE18 unlabeled
* Hyperparameters for DNN Objective:a = =1=1

13
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Experiments
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Experiments
* DNN Architecture
Layer Kernel | Channel in x Channel _out

Convl 5,1,1 23 x 512
Conv2 3,1,2 512 x 512
Conv3 3,1,3 512 x 512
Conv4 1,1,1 512 x 512
Conv5 1,1,1 512 x 1536
Statistics pooling 1536 x 3072
FC6 = 3072 x 512

FC7 = 512 x 512

Am-softmax - 512 x N
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Results
SRE16 | SRE18
Adapt Method EER (%) minDCF EER(%) minDCF
WGAN [12] 13.25  0.899 959  0.652
Sup. WGAN [12] 9.59  0.746 8.88  0.619
LSGAN [21] 11.74 - - -
Our DNN Adapt. 9.03 0.585 8.33  0.520

* All the results are without backend adaptation.

 Our DNN adaptation performs significantly better than the
previously proposed methods.
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Results
SRE16 |  SREIS
Adapt Method EER(%) minDCF EER(%) minDCF
Our DNN Adapt. 9.03 0.585 833 0.520
CORAL Adapt. 849 0560 874 0.553
PLDA Adapt. 855 0556 888 0.563
Ours+CORAL Adapt. 828 0.541 813 0.519
Ours+PLDA Adapt. 829 0546  8.09 0.521

 Combining the proposed method with backend adaptation
further improves the performance.

17
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Results
SREI6 | SREIS
Layer 7 Layer 6 Consis. EER(%) DCF EER(%) DCF
X X X 12.02 0990 11.59 0.72
v X X 9.79 0.621 9.08 0.580
v v X 9.63 0.606 8.77 0.555
v v v 9.03 0.585 8.33 0.520

* Multi-level adaptation significantly improves the performance
in both SRE16 and SRE18.

* Consistency regularization also helps.

18
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Conclusions

 Domain mismatch loss can be applied at both both frame-level
and utterance-level

* Apply MMD at frame level performs significantly better than at
utterance-level alone

e Data augmentation can be utilized in the unlabeled target-
domain through consistency regularization.
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Utterance- and Frame-level MMD
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