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Background

Sub-Nyquist Radar
Sub-Nyquist radars require fewer measurements, facilitating low-cost
design, flexible resource allocation, etc.

The reduced requirement in spectral, spatial and temporal resources
simplifies the hardware system, lower the cost, and the savings in
these resources facilitate some other applications such as spectrum
sharing [Ruan, 2016] and joint radar and communication system
[Ma, 2018], etc.
Based on compressed sensing (CS) that leverages the sparsity of the
target scene, sub-Nyquist radar systems attain target recovery
performance close to the traditional Nyquist radar [Na, 2018].
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Background

Track-before-detect
Both the Nyquist and Sub-Nyquist radars seem to be inadequate to
detect weak targets within single-frame (a single coherent processing
interval (CPI)) observations: They suffer from miss detection of true
targets and many spurious targets as well.

图: An example of miss detection and spurious target.
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Background

Track-before-detect (TBD)
Both the Nyquist and Sub-Nyquist radars seem to be inadequate to
detect weak targets within single-frame (a single coherent processing
interval (CPI)) observations: They suffer from miss detection of true
targets and many spurious targets as well.
Particularly, TBD based on multi-frame observations is developed for
detecting weak target that moves along with frames.

TBD jointly processes a plurality of frames [Tonissen, 1996], and
provides tracks of targets and their detection results simultaneously.
By combining the multi-frame information, TBD improves the
detection performance.
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Background

CS-TBD
There are also studies related to TBD in CS scenarios
[Liu, 2013, Zeng, 2016], in which CS algorithms are applied for target
recovery in a single frame and then Kalman Filter is used for tracking
the recovery results between frames.

Solomon etc. combine weighted sparse recovery with simultaneous
tracking [Solomon, 2019], and the tracking results of existing targets
are used in the weighted sparse recovery as prior information to
improve the recovery performance sequentially.
However, in low SNR situations, since no prior information of new
targets is available, the weighted sparse recovery still has poor
performance in discovering newly emerged weak targets.
Thus we simultaneously perform the traditional unweighted and
weighted sparse recovery methods to make it more suitable for low
SNR cases.
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System Model: Single-frame signal model
Consider a “thinned” radar system which transmits part of the pulses
in the CPI and part of the frequencies in the whole bandwidth, whose
transmitting signal can be represented as

s(t) =
P−1∑
p=0

δ[p] · h(t − pτ)ej2πfct, 0 ≤ t ≤ Pτ, (1)

where δ[p] = 1 or 0 indicates whether in the pth PRI, the transmitter
emits a pulse or not, and Ψ = {p|δ[p] = 1} indicates the set
containing the indices of transmitted pulses.
The baseband function h(t) is a narrowband pulse which can be
represented by its Fourier series, as

h(t) = 1

τ

N∑
n=1

H(2πn/τ)e−j2πnt/τ , (2)

where H(2πn/τ) = 0 for some n /∈ Φ.
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System Model: Single-frame signal model

图: An example of the sub-Nyquist transmitting waveform in one CPI where
P = N = 8, Ψ = 2, 4, 5, 7 and Φ = 2, 3, 5, 8.
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System Model: Single-frame signal model

According to the assumptions referred in [Cohen, 2018], which
assume far targets, slow targets, slow acceleration and narrowband
waveform, the receiving waveform can be expressed as

r(t) =
L∑

l=1

βl

P−1∑
p=0

δ[p] · h(t − pτ − τl)ej2π(fc−fDl )(t−τl), (3)

where βl is the complex scattering intensity of targets, τl = 2rl/c is
the targets’delay and fDl = 2vlfc/c is the Doppler frequency of
targets.
The Fourier coefficients of the received signal corresponding to the
pth pulse are

yp[n] =
L∑

l=1

β′
le−j 2π

τ
nτle−j2πfDl pτ , (4)

where p ∈ Ψ and n ∈ Φ.
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System Model: Single-frame signal model

To recast (4) into matrix form, we first divide the radar scanning
scene, i.e. the range-velocity plane, into a grid of N2 × P2 points,
that is

[X]n,p = β′
l , (5)

for the (n, p)th grid point corresponding to (τl, fDl ), where
X ∈ CN2×P2 is the sparse intensity matrix with L ≪ N2P2.
Let Y ∈ CN1×P1 represents the Fourier coefficients in (4) with entries
[Y]p,n = yp[n], where N1 and P1 are the cardinalities of Φ and Ψ,
respectively. Thus Y can be expressed as

Y = RXVT + N, (6)

where R ∈ CN1×N2 and V ∈ CP1×P2 are the steering matrices of
range and velocity, respectively, and [R]i,j = e−j2π(Φi−1)(j−1)/N2 ,
[V]i,j = e−j2π(Ψi−1)(j−1)/P2 . The last term N ∈ CN1×P1 is the i.i.d.
additive white Gaussian noise (AWGN).
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System Model: Weighted ℓ1 norm minimization
Weighted ℓ1 norm minimization origins from LASSO, which solves the
following optimization problem

min
X

{
1

2

∥∥Y − RXVT∥∥2
F + λ∥vec (X)∥1

}
, (7)

where λ is the regulation parameter balancing the fidelity of the
observation (i.e., the ∥ · ∥F term) and sparsity of the target scene
(characterized by the ℓ1 norm term).
The optimization problem (7) is rewritten as the following

min
X

{
1

2

∥∥Y − RXVT∥∥2
F + ∥vec (W ◦ X)∥1

}
. (8)

Here, the weighting matrix W is given by

[W]i,j = B/([J]i,j + ε), (9)
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System Model: Weighted ℓ1 norm minimization

The optimization problem (7) is rewritten as the following

min
X

{
1

2

∥∥Y − RXVT∥∥2
F + ∥vec (W ◦ X)∥1

}
. (8)

Here, the weighting matrix W is given by

[W]i,j =
B

[J]i,j + ε
, (9)

where J ∈ CN2×P2 denotes the likelihood of the nonzero entries in X,
ε is a small regularization parameter to avoid dividing zero, and B is
the normalization parameter given by

B = λmax
i,j

{[J]i,j + ε}. (10)

Here the parameter B is set to limit the minimum value of the
elements in W not less than λ.
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WL1NM-TBD: Multi-frame observations

We here consider a multi-frame signal model, consists of observations
from T frames/CPI.

As derived above, in the kth frame, the Fourier coefficients of the
echo, denoted by Yk, is given by

Yk = RkXkVT
k + Nk, 1 ≤ k ≤ T, (11)

where Rk and Vk can change over frames.
Through recovering Xk from Yk, we can obtain the range and
velocity of the targets, which is considered as an estimate of the true
state for tracking.
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WL1NM-TBD: Tracking models

Generally, a motion model and a measurement model are used to
describe a tracking problem.

Motion model: describes the movement of the target, indicates the
propagation of target states between adjacent frames.
Measurement model: represents the function of measurements with
respect to their ground truth.
We define the state vector as:

sl
k =

[
rl

k, vl
k, al

k

]T
(12)

which refers to the range, velocities and acceleration of the lth target
at the kth frame.
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WL1NM-TBD: Tracking models
The motion model can be represented by

sl
k = Asl

k−1 + ul
k, 1 ≤ k ≤ T, (13)

where A is often referred to the state transition matrix, given by

A =

 1 Pτ 1
2P2τ2

0 1 Pτ
0 0 1

 . (14)

The random vector ul
k ∼ N (0,Q) is the zero-mean additive Gaussian

noise, and the covariance matrix Q is given by

Q =

 1
4P4τ4 1

2P3τ3 1
2P2τ2

1
2P3τ3 P2τ2 Pτ
1
2P2τ2 Pτ 1

 ρ, (15)

where ρ indicates the disturbance that the acceleration is subjected to
and is chosen empirically.
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WL1NM-TBD: Tracking models
We then denote the measurement vector by

zk =
[
r̂l

k, v̂l
k

]T
, (16)

which contains the estimation of range and velocity of the lth target
at the kth frame, obtained from the recovery result of multi-frame
observations.

The measurement model, which links between the ground truth sl
k

and the recovery result zl
k, is given by a linear model as

zl
k = Msl

k + wl
k, 1 ≤ k ≤ T. (17)

Here, M is called the tracking measurement matrix defined as

M =

[
1 0 0
0 1 0

]
, (18)

noise vector wl
k ∼ N

(
0, σ2

nI2
)

is the zero-mean additive Gaussian
with In being a n dimensional unit matrix.
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WL1NM-TBD: Main idea

WLINM-TBD: Weighted ℓ1 Norm Minimization Track-Before-Detect.

We aim to promote the performance of recovery and tracking by each
other.

Recovery strategy: We apply weighted/unweighted ℓ1 norm
minimization when recovering with/without prior.
Tracking portion: Tracking, which includes generating new tracks,
updating tracks and deleting old tracks, utilizes the recovery result and
provides the prior for recovery.
Constructing weighting matrix: Weighting matrix is supposed to
sufficiently reflect the prior provided by tracking procedure.
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WL1NM-TBD: Recovery strategy

When generating new tracks, which means there is little prior, we
adopt LASSO for the previous F frames.

Weighted ℓ1 norm minimization is utilized based on the prior.

图: An example for recovery strategy in which F = 3 and T = 10.
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WL1NM-TBD: Tracking portion
Generating new tracks: Hough transform.

The purpose of the technique is to find imperfect instances of objects
within a certain class of shapes by a voting procedure [Wikipedia].

图: An example showing the results of a Hough transform on a raster image
containing two thick lines [Wikipedia].
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WL1NM-TBD: Tracking portion
Generating new tracks: Hough transform.

The purpose of the technique is to find imperfect instances of objects
within a certain class of shapes by a voting procedure.

图: An example of a Hough transform which transforms range-time plane
into range-velocity plane.
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WL1NM-TBD: Tracking portion

Generating new tracks: Hough transform.
Updating tracks: Kalman filter and track association.

Prediction
sp

k|k−1 = Asp
k−1|k−1,

Pp
k|k−1 = APp

k−1|k−1AT + Q,
(19)

Associating existing tracks with recovery result.
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WL1NM-TBD: Tracking portion

Generating new tracks: Hough transform.
Updating tracks: Kalman filter and track association.

图: An example for track association.
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WL1NM-TBD: Tracking portion

Generating new tracks: Hough transform.
Updating tracks: Kalman filter and track association.

Prediction
sp

k|k−1 = Asp
k−1|k−1,

Pp
k|k−1 = APp

k−1|k−1AT + Q,
(20)

Associating existing tracks with recovery result.
Updating

Kp
k = Pp

k|k−1HT
(

U + HPp
k|k−1HT

)−1

,

sp
k|k = sp

k|k−1 + Kp
k(z

p
k − Hsp

k|k−1),

Pp
k|k = (I − Kp

kH)Pp
k|k−1.

(21)
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WL1NM-TBD: Tracking portion
Generating new tracks: Hough transform.
Updating tracks: Kalman filter and track association.
Deleting old tracks: Track whose accumulated intensity in last D
frames is weak will be deleted.

图: An example of deleting old tracks.
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WL1NM-TBD: Constructing weighting matrix

Recall our weighted ℓ1 norm minimization problem

min
X

{
1

2

∥∥Y − RXVT∥∥2
F + ∥vec (W ◦ X)∥1

}
, (8)

where the weighting matrix W is given by

[W]i,j = B/([J]i,j + ε), (9)

with J denoting the likelihood of the nonzero entries in X.

Now we formulate our likelihood matrix J according to Kalman filter
which provides the prediction of targets’ state and its covariance.

[Jk]i,j =
L∑

l=1

Ale
−ql

(
1

σlr
2 (i−rl

0)
2−cl(i−rl

0)(j−vl
0)+

1

σlv
2 (j−vl

0)
2
)
, (22)
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图: Formulating likelihood matrix J with the prediction of Kalman filter.
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WL1NM-TBD: Summary

Now we summarize our WL1NM-TBD in flow diagram.

图: Flow diagram of WL1NM-TBD.

Finally, the detection result is provided by tracks.
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Numerical result

Experiment parameters
The “full” transmitting waveform: N = P = 16.

Sub-Nyquist compression: card(Ψ) = P1 = 8, card(Φ) = N1 = 8.
We divide the range-velocity plane into N × P grid points.
The PRI is τ = 0.0625 ms and the total bandwidth is B = 100 MHz,
thus the CPI is Pτ = 1 ms.
In the first experiment, we provide an example of the proposed
WL1NM-TBD comparing to LASSO and MF, where the SNR is 7dB
and both targets move at a radial velocity of 1.5km/s.
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Numerical result

图: (a) The ground truth, and recovery result of (b) MF, (c) LASSO and (d)
WL1NM-TBD.
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Numerical result

Next, we place L = 1 target in the scene and observe it with T = 10
CPIs, and the probability of false alarm is set to no more than 0.01.

We apply the MF with Hough transform, LASSO and WL1NM-TBD
methods, and evaluate the detection performance at the last frame
with probabilities of detection and spurious peak.

图: (a) The probability of detection. (b) The probability of spurious peak.
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Thank you!
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