Adaptive Rate Control Algorithm for SHVC: Application to HD/UHD

T.Biatek^{1,2}, W. Hamidouche³, J.-F. Travers², O. Deforges³ ¹b<>com, ²TDF, ³IETR / INSA de Rennes

1. Context

SHVC: a promising technology

- Scalable video coding
- Substantial compression gains
- Backward compatibility

Adaptive Rate Control (ARC)

- Adjusts encoding parameters to reach a targeted bitrate
- Used to deploys services on networks

New services introduction

- Provide UHD through EL
- While keeping HD service in BL

Need → ARC in SHVC to enable deployment of backward compatible UHD services!

2. Related work and motivations

Impact of the bitrate ratio on performance?

- Defined as $\tau = R_{BL}/(R_{BL} + R_{EL})$
- $\rightarrow \tau$ has a strong impact!

Existing ARC approaches

- Fine Granular Scalability in SVC
- Enable fast transcoding
- Separated bitrate per layer

Objective An ARC scheme based on variable ratio adjustment under global bitrate constraint (BL+EL) could strongly improve performance!

HEVC Encoder

SHVC Encoder

\rightarrow Do not exploit τ !

3. Proposed method

Encoding parameters

- Global bitrate: $R_G = R_{BL} + R_{EL}$
- Authorized ratio interval: $\Phi = [\tau_{min}, \tau_{max}]$

Goal

- Adjust the bitrate ratio τ in Φ
- To optimize the objective coding performance

O Illustration:

Step 1: GOP-Level global targeted bitrate

-
$$T_{AvgPic} = \frac{R_{PicAvg} \times (N_{Coded} + SW) - (R_{BL} + R_{EL})}{SW}$$
 with $R_{PicAvg} = \frac{R_G}{f}$

- $T_{GOP} = T_{AvgPic} \times N_{GOP}$

Step 2: Optimization problem

- $\tau_{opt} = \max_{\tau \in \Phi} G(\tau)$
- with $\max(\tau_{last} \times 0.8, \tau_{min}) \le \tau_{opt} \le \min(\tau_{last} \times 1.2, \tau_{min})$

Step 3: Layer-Level targeted bitrate:

- $T_{BL} = \tau_{opt} \times T_{GOP}$
- $T_{EL} = (1 \tau_{opt}) \times T_{GOP}$

\circ On-the-fly G(au) estimation:

- $G(\tau) = Q_{EL}(\tau) \triangleq \alpha \times \tau + \beta$
- Update buffer of N pairs (au_i,q_i) $_{\widehat{\mathbf{n}}}$

$$- \begin{pmatrix} \sum \tau_i^2 & \sum \tau_i \\ \sum \tau_i & N \end{pmatrix} \begin{pmatrix} \widehat{\boldsymbol{\alpha}} \\ \widehat{\boldsymbol{\beta}} \end{pmatrix} = \begin{pmatrix} \sum \tau_i q_i \\ \sum q_i \end{pmatrix}$$

FountainLady

Experiments and analysis

Data set

- EBU UHD-1 dataset
- Ten 3840x2160p40 8-bits 10-sec sequences
- HD versions built with SHM-9.0 down-sampler

Encoding parameters

- $\Phi = [\tau_0 25\%, \tau_0 + 25\%]$ for ratio interval
- $\tau_0 = \frac{1}{2 \times \sqrt{2}}$ which is the ratio achieved by using the CTC
- $R_G \in \{5, 10, 15, 20\}$ Mbps

Two approaches are compared to the single-layer (BD-BR)

- Our method integrated in the SHM-9.0 \rightarrow G_{ARC}
- Native SHM-9.0 working at fixed ratio $au_0 o G_{Ref}$
- Comparison between fixed and ARC \rightarrow G_X

Observations:

- Bitrate overhead reduced from 20% to 16%.
- With a crossed BD-BR improvement of 4.25%
- Best method for 9 in 10 sequence.

Next Step

Quality and bitrate requirements per layer

ParkDancers

