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How can this paper be helpful?

Can it only be applied to Mandarin?
* Nope.

To what languages could it be helpful?
« Any language with a rule-based Text Normalization system.

Goal for this paper?
* Improve the performance of a rule-based model.
« Combine system flexibility and model generalizability.



I Text Normalization (TN)

$2,000 Text Normalization Two thousand dollars
Jan. 22nd January twenty second

Challenge: Ambiguous Cases




Rule-based TN System

Match non-standard words with rules
» Regular Expressions
« Keywords
 Priority

Pros:

* Flexible (add new rules easily)
« Highly developed (handle various cases)

Cons:
* Hard to improve on general cases



| Neural TN Model

Classification Neural model
« Carefully designed pattern groups
* Multi-head self-attention

Table 1. Examples of some dataset pattern rules.

Pattern Name

Pattern Example

A _Read_No_Zero 200 people

A _Spell_Keep_Zero | The 2020 Conference
B_Percent Only 10% of students voted
B_Range about 10-15 degree
B_Score_Ratio Team A is 30-10 leading
B_Slash_Per There are five people/group
B_Time It starts at 10:30
B_Date_YMD Today is 2019-10-01

A _Two_Liang 21~ A\ (2 people)

A _One_Yao_Spell

7911 (Call 911)
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Neural TN Model e
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B Proposed Hybrid System 2

* Priority Check (rule-based TN model)

. . |
 Easy to add user-defined strings. 7N
« Easy to add special cases (e.g. 911). !
* Handles 22.8% non-standard words. (
* Main Module (neural TN model) I e !
» Handles 77.2% non-standard words. g Tangiormed
» Pattern Check (rule-based TN model) 2 -
« 2.2% failed patterns from the main module. i |
» Normalization of all remaining patterns. Trongiormed Ouut

Fig. 1. Flowchart of the proposed hybrid TN system.



I Another Challenge — Imbalanced Dataset

A_One_Yao_Spell B_Slash_Per B_Time
1% 1% 1%
B_Score_Ratio B_Date_YMD
1% 1%

 The dataset is imbalanced At g

* Top 5 patterns take up > 90%. e
* Leading to a less robust neural model.

» Solutions

e Introduce focal loss.

I —at(1 —p)Tlog(p),if y=1
| —aup”log(l—p),if y=0

(1)

» Data expansion.

« Data duplication, context replacing, random Fig. 3. Label distribution for dataset.
digits change...



Experimental Result — Neural Model

* Proposed system has the following configurations:
« Word2Vec Word Embedding.
» Focal Loss without data expansion.
 Bi-classification mask (whether a symbol exists).

Table 2. Comparison of different experimental setups.

Experimental setup Accuracy
Model 1 (proposed) 0.916
Model 2 (+ BERT) 0.904
Model 3 (+ pad 0’s) 0.914
Model 4 (+ max window) 0.907
Model 5 (+ CE loss) 0.913
Model 6 (- mask) 0.910
Model 7 (+ data expansion) 0.908




I Experimental Result — Neural Model

* Neural model performance on different pattern groups.

Table 3. Model performance on the test dataset.

Pattern Name Precision | Recall Fy

A_Read_No_Zero 0.974 0.979 | 0.977
A _Spell_Keep_Zero 0.932 0.916 | 0.924
B_Percent 0.998 0.990 | 0.994
B_Range 0.932 0.932 | 0.932
B_Time 0.969 0.912 | 0.939
B_Score_Ratio 0.962 0.962 | 0.962
B_Slash_Per 0.994 0.966 | 0.980
B_Date_YMD 1.000 0.923 | 0.960
A_Two_Liang 0.613 0.797 | 0.693
A _One_Yao_Spell 0.637 0.631 | 0.634

Overall Accuracy 0.916




B Experimental Result — Proposed System

« Performance comparison on golden test set (~70,000 sentences)
* Increased accuracy by 1.9% on sentence level.
« On average, 95.5% pattern accuracy is achieved.
« Our service shows the system is more robust on different types of news.

Table 4. Model performance on the news golden set.
Sentence Accuracy | Pattern Accuracy
Rule-based TN model 0.867 0.946
Proposed TN system 0.886 0.955




Thanks for watching!
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