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Problem Formulation

Consider a connected network consisting of N nodes. Each node k has access to streaming
data {dk,n,uk,n}, which are related via the linear model:

dk,n = u>k,nw
?
k + zk,n. (1)

We assume that vectors w?
k over the entire network are jointly sparse, namely:

supp(w?
1) = · · · = supp(w?

k) = · · · = supp(w?
N ) (2)

where supp(w?
k) , {j : [w?

k]j 6= 0} is the support of w?
k.
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Proximal Multitask Diffusion LMS

Define the local parameter matrix:

Wk ,
[
wk, w

?
` with ` ∈ N−k

]
∈ IRL×|Nk|. (3)

To facilitate the following derivation we also denoteWk by

Wk =
[
w̄>k,1 · · · w̄>k,m · · · w̄>k,L

]>
, (4)

where w̄k,m is the m-th row of matrixWk.
We consider the regularized cost at node k:

Jk(wk) = J ′k(wk) + λkg(wk) (5)

with J ′k(wk) ,
1
2 E
{
|dk,n − u>k,nwk|2

}
, and g(wk) ,

∑L
m=1 ‖w̄k,m‖∞ evaluates the

`∞,1-norm ofWk.
At each node k, we then consider the convex optimization problem:

w†k = argmin
wk

Jk(wk). (6)
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Proximal Multitask Diffusion LMS

Proximal gradient methods generate a sequence of estimates by the following iterations:

wk,n+1 = proxµkλkg
(
wk,n − µk∇J ′k(wk,n)

)
, (7)

where µk is a positive small step-size, and the proximal operator is defined by

proxλg(v) , argmin
wk

(
g(wk) +

1

2λ
‖wk − v‖22

)
. (8)

We obtain from (7) the proximal multitask di�usion LMS algorithm for jointly sparse
networks: {

ψk,n+1 = wk,n+µkuk,n
(
dk,n − u>k,nwk,n

)
wk,n+1 = proxµkλkg

(
ψk,n+1

) (9)
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Proximal Operator Evaluation of `∞,1 Regularizer

We need to derive a closed-form expression for the following proximal operator:

wk,n+1=proxµkλkg(ψk,n+1)

=argmin
wk

(
g(wk)+

1

2µkλk
‖wk−ψk,n+1‖22

)
. (10)

As g(wk) is separable over its all entries, its proximal operator can be evaluated in an
element-wise manner as:

[proxµkλkg(ψk,n+1)]m = proxµkλkgm([ψk,n+1]m) (11)

with gm([wk]m) , ‖w̄k,m‖∞, [wk]m is the m-th entry of wk, and w̄k,m is the m-th row of
matrixWk in (3).
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We have:

[wk,n+1]m = argmin
[wk]m

(
max{|[wk]m|, |[w

?
` ]m| with ` ∈ N−k }

+
1

2µkλk

(
[wk]m − [ψk,n+1]m

)2)
. (12)

We denote [wk,n+1]m by ŵ and the maximal value of |[w?
` ]m| for ` ∈ N−k as [wo

k]m.

Case 1: |[wk]m| < [wo
k]m. In this case, (12) becomes:

ŵ= argmin
[wk]m

|[wk]m|<[wo
k]m

[wo
k]m+

1

2µkλk

(
[wk]m−[ψk,n+1]m

)2
. (13)

The solution is directly given by:

ŵ =


[ψk,n+1]m, if |[ψk,n+1]m| < [wo

k]m
[wo

k]m, if [ψk,n+1]m ≥ [wo
k]m

−[wo
k]m, if [ψk,n+1]m ≤ −[wo

k]m.

(14)
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Case 2: |[wk]m| ≥ [wo
k]m. Equation (12) becomes:

ŵ=argmin
[wk]m

|[wk]m|≥[wo
k]m

(
|[wk]m|+

1

2µkλk

(
[wk]m−[ψk,n+1]m

)2) (15)

Consider first:
ŵo=argmin

[wk]m

(
|[wk]m|+

1

2µkλk

(
[wk]m−[ψk,n+1]m

)2) (16)

the solution is given by the so� thresholding operator defined as:

ŵo = Sµkλk
(
[ψk,n+1]m

)
= (17)

[ψk,n+1]m+µkλk, if [ψk,n+1]m<−µkλk
[ψk,n+1]m−µkλk, if [ψk,n+1]m>µkλk

0 otherwise.
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If [wo
k]m = 0, problem (15) becomes unconstrained and we have:

ŵ = ŵo (18)

Otherwise, considering constraint |[wk]m| ≥ [wo
k]m > 0 with (17) leads to:

ŵ = (19)

[ψk,n+1]m+µkλk, if [ψk,n+1]m≤ −[wo
k]m − µkλk

−[wo
k]m, if −[wo

k]m−µkλk< [ψk,n+1]m<0

−[wo
k]m or [wo

k]m, if [ψk,n+1]m = 0

[wo
k]m, if 0< [ψk,n+1]m< [wo

k]m+µkλk

[ψk,n+1]m−µkλk, if [ψk,n+1]m ≥ [wo
k]m+µkλk
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To evaluate the proximal operator (12), several issues have to be addressed.
1. We first need to know which of (14), (17) or (19) has to be applied as the proximal operator
of (12).

Case A: [wo
k]m = 0. Since condition |[wk]m| < [wo

k]m of Case 1 cannot hold, we only
consider Case 2. The proximal operator is given by (17) directly.

Case B: [wo
k]m > 0. Proximal operators (14) and (19) hold simultaneously. We shall

choose the solution that minimizes the cost (12). We arrive at the following expression:

ŵ = (20)

[ψk,n+1]m+µkλk, if [ψk,n+1]m≤ −[wo
k]m − µkλk

−[wo
k]m, if −[wo

k]m−µkλk<[ψk,n+1]m≤−[wo
k]m

[ψk,n+1]m, if
∣∣[ψk,n+1]m

∣∣< [wo
k]m

[wo
k]m, if [wo

k]m≤ [ψk,n+1]m< [wo
k]m+µkλk

[ψk,n+1]m−µkλk, if [ψk,n+1]m ≥ [wo
k]m+µkλk
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2. Another issue is that ŵ cannot be evaluated with (17) and (20) since [wo
k]m is unknown.

An approximation of [wo
k]m is given by max`∈N−

k
{
∣∣[ψ`,n+1]m

∣∣}.

3. Condition [wo
k]m = 0 has to be satisfied to trigger Case A, otherwise Case B is considered.

Due to the existence of gradient noise, the condition [wo
k]m = 0 of Case A is seldom satisfied.

Thus we instead use conditions [wo
k]m ≤ τ to trigger Case A and [wo

k]m > τ to select Case B.
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Simulation Results

We considered a nonstationary jointly sparse system identification scenario with w?
k varying

over time.
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Figure 1: Simulation results with white inputs.
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Figure 2: Simulation results with colored inputs.
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