## ICASSP 2020

## Intensity-Image Reconstruction For Event Cameras Using Convolutional Neural Network

Yongwei Chen, Weitong Chen, Xixin Cao, Qianting Hua Peking University

# Introduction

- What is an event camera?
- Dynamic Vision Sensor (DVS)
- Pixels measure intensity changes asynchronously and independently
- Event (location X,Y, Polarity, Time)



Generate events at a pixel when intensity changes exceed the threshold

Working principle of event cameras

# Introduction

# Advantages of event cameras

- High dynamic range
- No motion blur
- low redundancy
- Low latency (µs)
- High temporal resolution (μs)
  Purpose of research:
- Advantages of using event cameras.
- Compatible with existing frame-based algorithms
- Screen display and human observation



Event cameras VS standard cameras



## Method

#### Two steps

- Convert the events into event frames
- U-net (U) network transforms event frames into intensity images (I).

#### Some details

- The U-net is trained on simulated datasets.
- The simulator ESIM generate event streams and timestamped frame images(APS).
- Perceptual loss



Overview of our approach



A pair of event frame (one channel of the input image) and APS image (the ground truth) in the training dataset.

## Method

## An attenuation method to generate event frames.

- If the same pixel (x, y) generates several events  $e_0, e_1, e_2 \dots e_k \dots e_n$ .
- The threshold of  $e_k$  is expressed as  $C_k$ .
- $L_k(x, y)$  is the intensity value of  $e_k$
- $\beta$  is an attenuation coefficient less than 1.
- $L_k(x, y)$  is affected by all events that are generated by pixel (x, y)
- The magnitude of influence is reflected in  $\beta^n$ .
- Historical information is attenuated.

$$\begin{cases} L_0(x, y) = C_0 \\ L_1(x, y) = L_0(x, y) \times \beta + C_1 \\ L_k(x, y) = L_{k-1}(x, y) \times \beta + C_k \\ L_n(x, y) = L_{n-1}(x, y) \times \beta + C_n \\ = C_0 \times \beta^n + C_1 \times \beta^{n-1} + \dots + C_k \times \beta^{n-k} + \dots + C_n \times \beta^0 \end{cases}$$

## Method

## **U-net network**

- The network has 5 encoders, 1 residual block, 5 decoders and a final convolutional layer
- Skip connections



### **Experiments and Evaluation**



Generated images of different model. The column (a) shows events, and the column (e) shows APS images of DAVIS for reference, and other columns show the generated images.

## **Experiments and Evaluation**

| <b>Table 1</b> quantitative comparison using SSIM and FSIM |      |      |
|------------------------------------------------------------|------|------|
| Model                                                      | SSIM | FSIM |
| CFe                                                        | 0.55 | 0.68 |
| MR                                                         | 0.64 | 0.71 |
| Ours                                                       | 0.78 | 0.89 |



Result in noise dataset.

**Thanks for listening !** 

**Intensity-Image Reconstruction For Event Cameras Using Convolutional Neural Network**