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Introduction

• Passive intelligent surface (PIS):
a) Remotely programmed via a software controller

b) Can alter the electromagnetic behavior of the wireless channel 

c) Reflecting a phase-shifted version of the incoming signal

d) Without requiring any active radio resource for retransmission

• Major bottlenecks include:
a) Unawareness about the ungoverned fading channel 

b) Ultralow power computational capability

• New constant-envelope passive energy beamforming (EB) designs to gain system engineering insights

• Focus: Designing efficient PIS-assisted wireless energy transfer (PET) protocol



Literature Review

• Supporting timely energy sustainability demands of wireless devices in Internet-of-things (IoT) [1]

• Some of its implementation designs include:
a) Lightweight elements attached to walls or ceilings [2]

b) Electronically-controlled resonant frequency-based varactor diodes [3]

c) Liquid crystal meta-surfaces fabricated via lithography or nano printing [4] 

• Optimal transmit power allocation and phase shifters (PS) design for maximizing sum-rate [5] 

• Statistical CSI based study on the effect of PS design on the ergodic spectral efficiency [6]
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Multiuser Designs and Research Gap

• SDR and alternating optimization techniques to obtain passive EB designs for PIS-assisted multiuser MISO [7]

• Likewise, two alternating optimization-based efficient energy efficiency maximization algorithms  [8]

• Joint active and passive beamforming using random matrix theory tools for max-min goal [9]

• Concerns with existing designs:
a) Low-complexity constraints of PIS were ignored

b) Perfect CSI availability was assumed

• Compressive sensing-based channel construct approach to obtain the full CSI [10] 

• Least-squares (LS) based channel estimation (CE) protocol for single-user setting [11].

• Research Gap: Multiuser CE protocol involving low-complexity EB designs for maximizing sum power during PET
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Motivation and Contributions

• Existing passive EB designs are based on computationally-inefficient numerical methods like SDR  

• Novel analytical expressions for the jointly-optimal active and passive EB designs are needed

• Practical limitations like unavailability of strong prior for CE

• Overcoming PIS-bottlenecks by to enable sustainable IoT developing closed-form green PS designs 

• The key contribution of this work is three-fold:

a) Novel optimization framework and LS-based CE protocol for the underlying effective cascaded channels to maximize the sum power

b) Closed-form expressions for optimal active precoder for power beacon (PB) and passive constant-envelope precoding-based PS design

c) Numerical investigation is carried out to validate the key analytical claims and demonstrate the performance gains over the benchmark



System Description 
• Multiuser MISO wireless system with:

a) L single-antenna IoT users U randomly deployed
inside a square-field of length D meters (m)

b) an N-antenna PB or energy source S
c) an M-element PIS I installed on the opposite wall

• Flat quasi-static Rician block fading is considered

• PIS has M dynamically reconfigurable low-resolution PS

• PIS-controller is connected and programmed by PB 
having all computational resources

• The composite channel involves the concatenation of S-
to-I channel, PS matrix at I, and I-to-U channel



Channel-Reciprocity Based Downlink MISO PET

• Assuming channel-reciprocity, the downlink (DL) channel coefficients for all links are obtained by 
estimating them from the uplink (UL) pilot transmission from the IoT users

• Coherence interval is divided into two subphases: UL CE and DL PET

• The combined signal received at IoT users during PET subphase is:

• Sum signal power as received among the L EH users can be approximated to:



On-Off PIS Design Based Channel Estimation

• Binary-reflection (on or off) based CE protocol for multiuser PET is proposed

• PB estimates the CSI for all the links on an element-by-element basis at PIS over M + 1 subphases

• Constants 𝜖0 and 𝜖1 model realistic implementation errors in ON and OFF modes

• The entries of the combined PS matrix during the CE phase are:

• The combined received signal matrix at S during CE can be written as:

where  



Expressions for LS Estimates

• The vectorized form for the LS estimate of S-to-U channel matrix as obtained using the pseudo-
inverse of the pilot matrix can be written as:

•



Optimal Active EB Design for a Given PIS Design

• Assuming perfect CSI availability at S, the joint optimization problem can be formulated as:

• For a given PIS design, active EB designing problem is given by:

• The globally-optimal solution for active EB is characterized via the principal eigenvector:

• The maximum value of the objective of active EB problem is bounded as:



PS Design Maximizing Sum Received Power via PIS

• Relaxing the nonconvex constant-envelope constraint (C2) to (C3), optimization problem reduces to:

• The underlying sub-gradient Karush-Kuhn-Tucker (KKT) condition is given by:

• Above can be simplified to the eigenvalue problem form with underlying globally-optimal being the 
principal eigenvector                                     

• Now, as the optimal passive EB must satisfy the practical PIS design constraint (C2), the first 
proposed low-complexity PIS design can be obtained as the minimizer of:

• The globally-optimal solution of above problem is:



Analytical PIS Design for Constructive Interference

• The second low-complexity PIS design is aimed to ensure that the reflected signals from PIS get 
coherently added up at the users with ones received directly from S

• The sub gradient KKT condition for the above optimization problem is given by:

• Solving above in passive EB design leads to globally-optimal solution of the above problem as:

• Now again here noting that scalar 𝜈𝑃2, the closed-form expression for the 2nd optimal constant-envelope 
PIS design as obtained by solving the underlying LS error minimization problem, can be written as:



Performance Comparison and Impact of Key Parameters

• We  compare the performance of the two proposed passive EB designs (semi-closed-form and analytical PIS designs) for different 
values of key system parameters like active array size N at PB, PIS size M, number L of IoT users, and the distance D between PB & PIS

• The benchmark scheme considered here sets its active EB design assuming no PIS availability

• The average gain as achieved by using M = 50 over M = 10 remains almost constant around 2.6dB for varying N

• 11.7 dB gain is achieved by both schemes when N is increased from 10 to 150

• With increasing L, the sum received power performance improves by 7.65dB and 9.43dB, respectively, for M = 10 and M = 50

• With the field size D increased from 10m to 25m, the performance degrades by 4.5dB and 1.9dB, respectively, for M = 10 and M = 50



Impact of CE Errors and Gains

• The quality of the proposed estimators improves with increasing SNR for both with and without PIS settings

• For SNR higher than 5 and 10dB, the proposed estimator approaches the perfect CSI case for M = 0 and M = 100

• Analytical PIS design is better than the semi-closed-form one with a performance gap of < 0.01dB

• Using LS estimators provides an additional improvement of 0.01dB, 0.03dB, 0.06dB, and 0.13dB, for M as 10, 25, 50, and 100

• An improvement of 0.7dB to 6.8dB is achieved by the proposed CE with optimal EB for M = 10 and M = 100



Concluding Remarks

• We introduced an on-off based CE protocol for multiuser PET system

• Derived the closed-form expressions for the underlying LS estimators

• Novel analytical expressions for the jointly-optimal active and passive EB designs

• Demonstrated significant performance enhancement over the benchmark

• The developments can be extended for exploring the efficacy of PET in improving 
information rates and spectral efficiencies in multiuser systems
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