

Active Control of Line Spectral Noise with Simultaneous Secondary Path Modeling Without Auxiliary Noise

Meiling HU Jing LU

Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, China

Outlines

- Background
- Theory
- Simulations
- Conclusions

Background

Scheme of ANC

Background

- Off-line modeling
 - pros Easy implementation
 - cons Incapable of tracking varying secondary path
 - cons Have to be executed before ANC
- On-line modeling
 - pros Theoretically good tracking ability
 - cons Require additive noise
 - cons Some methods suspend the control process
- Proposed method
 - pros Simple structure
 - pros No additive noise

Background

- Previous work
 - Proof of the effectiveness of the proposed simple structure to model and control simultaneously under the basic assumption that the primary noise is not line spectral process
- This work
 - Proof of the effectivity of the proposed simple structure to model and control simultaneously under the basic assumption that the primary noise is line spectral process

- Note the connection
 between SAEC and ANC
- Analysis of nonuniqueness problem of SAEC is helpful in ANC
 - Control filter acts as a time-varying transfer function

Theory

 The goal is to prove that the joint auto-correlation matrix of x and y is full-rank

- -x is the reference signal
- y is the output of the control source
- x and y are the modeling inputs of the primary and secondary path
- Full rank joint autocorrelation matrix of x and y leads to a wiener function of unique solution while minimizing the cost v, $E[v^2]$

The goal of the proof

- Assumption
 - The reference noise is of line spectral property and composed of N/2 frequencies
 - The impulse responses of P, S,
 W are all set as N
- Used facts
 - I.Time-varying control filter W(z)
 - 2. Signal with non-zero power spectrum at N/2 frequencies is full-rank for a correlation matrix of dimension N×N
 - 3. The eigenvalues of the circulant matrix are determined by the Fourier transform of its first row

Cost function

$$E\left[v^{2}\right] = \mathbf{c}^{\mathrm{T}} E\left[\mathbf{\tilde{x}}\mathbf{\tilde{x}}^{\mathrm{T}}\right]\mathbf{c}$$

where (assume noise with N/2 frequencies)

$$\mathbf{c} = \mathbf{G}^{\mathrm{T}} \left(\mathbf{p}_{o} - \mathbf{p} \right) + \mathbf{W}^{\mathrm{T}} \left(\mathbf{s}_{o} - \mathbf{s} \right) \qquad \mathbf{G} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}_{N \times 2N}$$

$$\tilde{\mathbf{x}} \left(n \right) = \begin{bmatrix} \mathbf{x}^{\mathrm{T}} \left(n \right) & \mathbf{x}^{\mathrm{T}} \left(n \right) \end{bmatrix}^{\mathrm{T}} \qquad \mathbf{x} \left(n \right) = \begin{bmatrix} x \left(n \right) & \cdots & x \left(n - N + 1 \right) \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{W} = \begin{bmatrix} w(1) & w(2) & \cdots & w(N) & 0 & \cdots & 0 & 0 \\ 0 & w(1) & w(2) & \cdots & w(N) & \ddots & \vdots & 0 \\ \vdots & 0 & \ddots & \cdots & \cdots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & w(1) & w(2) & \cdots & w(N) 0 \end{bmatrix}$$

Crucial details of the proof

 Take the derivative of the cost function with respect to s

$$\frac{\partial E\left[v^2\right]}{\partial \mathbf{s}} = -2\mathbf{W}E\left[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\mathrm{T}}\right]\mathbf{c}$$

 \bullet Initialize ${\bf w}$ as a non-zero vector, then ${\bf W}$ has full row rank

$$\mathbf{W}E\left[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\mathrm{T}}\right]\mathbf{c}=0 \Leftrightarrow E\left[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\mathrm{T}}\right]\mathbf{c}=0$$

• Utilize time-varying property of w $c=G^{T}(p_{o}-p)+W^{T}(s_{o}-s)$

Time-varying control filter W(z)

$$\mathbf{c}_{*} = \mathbf{G} \quad (\mathbf{p}_{o} - \mathbf{p}) + \mathbf{w}_{*} \quad (\mathbf{s}_{o} - \mathbf{s})$$
$$E\left[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\mathrm{T}}\right]\mathbf{c} = 0, E\left[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\mathrm{T}}\right]\mathbf{c}_{*} = 0$$

 $\mathbf{C}^{\mathrm{T}}(\mathbf{r}, \mathbf{r}) + \mathbf{W}^{\mathrm{T}}(\mathbf{r}, \mathbf{r})$

Crucial details of the proof

ICASSP 2020

10/16

• Subtraction of $E \begin{bmatrix} \tilde{\mathbf{x}} \tilde{\mathbf{x}}^T \end{bmatrix} \mathbf{c} = 0$ and $E \begin{bmatrix} \tilde{\mathbf{x}} \tilde{\mathbf{x}}^T \end{bmatrix} \mathbf{c}_* = 0$ leads to

$$E\left[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\mathrm{T}}\right]\left(\mathbf{c}-\mathbf{c}_{*}\right)=E\left[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\mathrm{T}}\right]\tilde{\mathbf{W}}^{\mathrm{T}}\left(\mathbf{s}_{\mathrm{o}}-\mathbf{s}\right)=0$$

 $\tilde{\mathbf{W}} = (\mathbf{W} - \mathbf{W}_*)$ • Divide $\tilde{\mathbf{W}}$ into left and right part $\tilde{\mathbf{W}}_{(1)}$ and $\tilde{\mathbf{W}}_{(2)}$ • $E[\tilde{\mathbf{x}}\tilde{\mathbf{x}}^T]$ can be denoted as

$$E\begin{bmatrix} \tilde{\mathbf{x}}\tilde{\mathbf{x}}^{\mathrm{T}}\end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{R} \\ \mathbf{R} & \mathbf{R} \end{bmatrix} \mathbf{W} = \begin{bmatrix} w(1) & w(2) & \cdots & w(N) & 0 & \cdots & 0 & 0 \\ 0 & w(1) & w(2) & \cdots & w(N) & \ddots & \vdots & 0 \\ \vdots & 0 & \ddots & \mathbf{W} & \cdots & \mathbf{W} & 0 & \vdots \\ 0 & \cdots & 0 & w(1) & w(2) & \cdots & w(N) 0 \end{bmatrix}$$

Crucial details of the proof

ICASSP 2020

11/16

• $\mathbf{R}\left(\tilde{\mathbf{W}}_{(1)}+\tilde{\mathbf{W}}_{(2)}\right)^{\mathrm{T}} \begin{pmatrix} \mathbf{s}_{\mathrm{o}}-\mathbf{s} \end{pmatrix} = 0$ **Fact 2** \Im Signal with non-zero power spectrum at N/2 frequencies is full-rank for a correlation matrix of dimension $N \times N$ • $\left(\tilde{\mathbf{W}}_{(1)}+\tilde{\mathbf{W}}_{(2)}\right)^{\mathrm{T}} \begin{pmatrix} \mathbf{s}_{\mathrm{o}}-\mathbf{s} \end{pmatrix} = 0$ • Where

$$\tilde{\mathbf{W}}_{(1)} + \tilde{\mathbf{W}}_{(2)} = \begin{bmatrix} \tilde{w}(1) & \tilde{w}(2) & \cdots & \tilde{w}(N) \\ \tilde{w}(N) & \tilde{w}(1) & \cdots & \tilde{w}(N-1) \\ \vdots & \ddots & \ddots & \vdots \\ \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(1) \end{bmatrix}$$

• is full-rank Fact 3

The eigenvalues of the circulant matrix are determined by the Fourier transform of its first row

Crucial details of the proof

ICASSP 2020

12/16

Simulations

Initializing x, y, u, h, f, Q, λ , μ , and w

for
$$n = 0, 1, 2, ...$$
 do

(a) for i = 0 to N - 1, $y(n - i) = \mathbf{w}^{T} \mathbf{x}(n - i)$; stack $\mathbf{x}(n)$ and $\mathbf{y}(n)$ into $\mathbf{u}(n)$;

(b) modeling process using the RLS algorithm

$$\mathbf{k} = \mathbf{Q}\mathbf{u}(n) / (\lambda + \mathbf{u}^{T}(n)\mathbf{Q}\mathbf{u}(n))$$

$$\mathbf{h} = \mathbf{h} + \mathbf{k}(e(n) - \mathbf{h}^{T}\mathbf{u}(n))$$

$$\mathbf{Q} = (\mathbf{Q} - \mathbf{k}\mathbf{u}^{T}(n)\mathbf{Q}) / \lambda$$
assign the last N taps of **h** to **s**;
(c) for $i = 0$ to $N - 1$, $f(n - i) = \mathbf{s}^{T}\mathbf{x}(n - i)$;
(d) **control process** using the LMS algorithm
 $\mathbf{w} = \mathbf{w} - 2\mu\mathbf{f}(n)e(n)$.
Excited frequency
number is 3 so N =
6
Forgetting factor of
RLS is 0.999
Learning rate $\mu =$
0.01
w is initialized as
zero except for
0.001 at the first tap

Simulations

Simulations

Simulations

Conclusions

 For the noise of line spectral process, the modeling process of the secondary path that uses only the output of the control filter is possible.

• The secondary path is guaranteed to converge to the optimum as long as the number of non-zero spectrum frequencies is known and the control filter is set as twice this number.

Thanks for your attention!