

Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram

*Ryuichi Yamamoto*¹, *Eunwoo Song*², *Jae-min Kim*² ¹LINE Corp., Japan ²NAVER Corp., South Korea

Raw waveform generation: Autoregressive (AR) vs. non-AR

Autoregressive models

© High-fidelity speech generation (e.g., WaveNet [1])

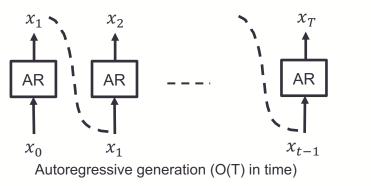
8 Generation is too slow

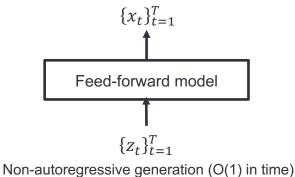
Non-autoregressive models

Teacher-student-based methods (Parallel WaveNet [2], ClariNet [3])

© Real-time generation

⊗ Complicated two-stage training using probability density distillation





A. van den Oord *et al.*, "WaveNet: A generative model for raw audio," *arXiv preprint arXiv:1609.03499*, 2016.
A. van den Oord, *et al.*, "Parallel WaveNet: Fast high-fidelity speech synthesis," in *Proc. ICML*, 2018.
W. Ping, *et al.*, "ClariNet: Parallel wave generation in end-to-end text-to-speech," in *Proc. ICLR*, 2019.

Our approach: GANs for waveform generation

Parallel WaveGAN (Parallel inference + WaveNet + GAN)

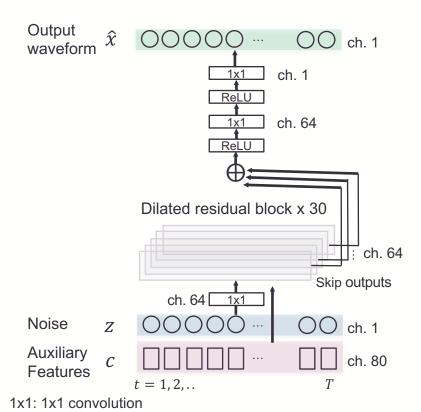
- **Distillation-free:** a distillation-free fast waveform generation, combining multiresolution STFT loss and adversarial loss.
- **Fast:** Training and inference speed become 4.82 / 1.96 times faster than the conventional parallel WaveNet (i.e. ClariNet).
- **High-quality:** Our model achieves 4.16 MOS (in Transformer-based TTS) that is competitive to the best distillation-based ClariNet.

GAN-based methods can be good alternatives to distillation based methods.

STFT: Short-time Fourier transform MOS: Mean-opinion score

3

Parallel WaveGAN: WaveNet-based generator



Architecture

Generator architecture is almost the same as WaveNet [1]

Conditional waveform generation

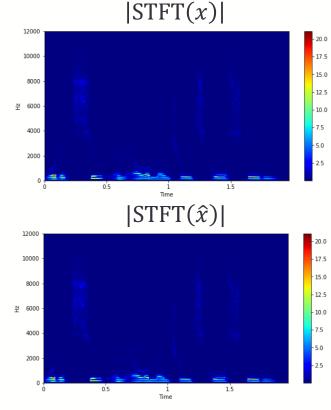
80-dim mel-spectrogram as auxiliary features

Model comparison between WaveNet and ours

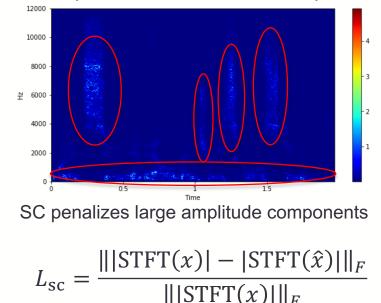
	WaveNet	Parallel WaveGAN
Input	Previous samples	Random noise for all time steps
Output	Probability distribution	Raw waveform samples
Convolution	Causal conv.	Non-causal conv.

[1] A. van den Oord et al., "WaveNet: A generative model for raw audio," arXiv preprint arXiv:1609.03499, 2016.

STFT loss: Spectral convergence (SC) [4]

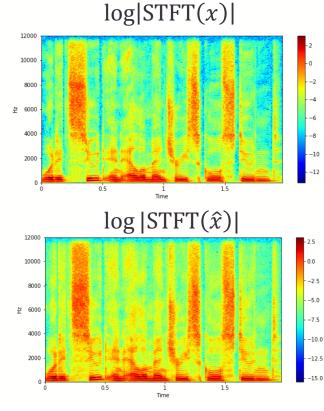


$$|\text{STFT}(x)| - |\text{STFT}(\hat{x})|$$

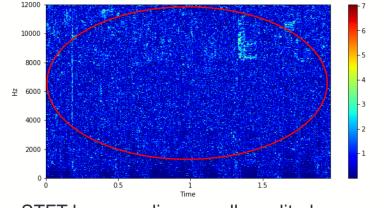


[4] S. O. Arik, et al, "Fast Spectrogram Inversion using Multi-head Convolutional Neural Networks," IEEE Signal Procees. Letters, 2019.

STFT loss: Log-scale STFT magnitude loss [4]



 $|\log|STFT(x)| - \log|STFT(\hat{x})||$



Log STFT loss penalizes small amplitude components

$$L_{\text{mag}} = \frac{1}{N} \|\log|\text{STFT}(x)| - \log|\text{STFT}(\hat{x})|\|_{1}$$

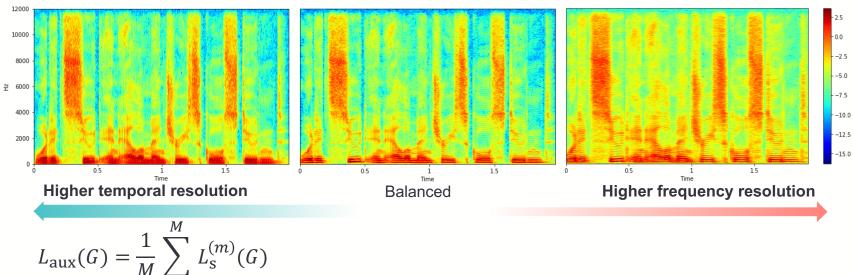
N: number of elements in the STFT magnitude

[4] S. O. Arik, et al, "Fast Spectrogram Inversion using Multi-head Convolutional Neural Networks," IEEE Signal Procees. Letters, 2019.

Multi-resolution STFT loss

FFT size / window size / shift

512 / 240 / 50



2048 / 1200 / 240

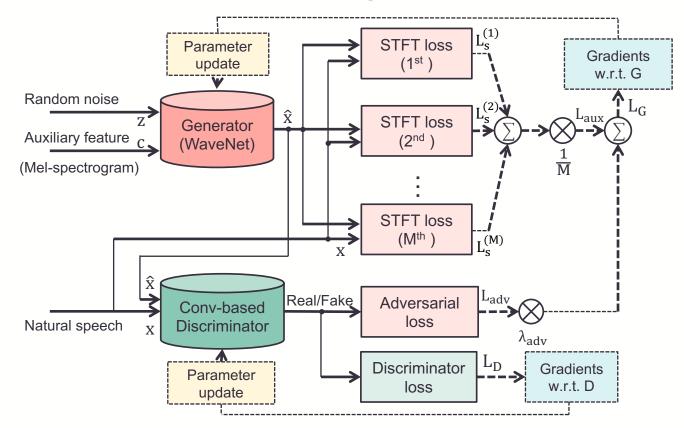
1024 / 600 / 120

$$m=1$$

$$L_{s}(G) = \mathbb{E}_{z \sim p(z), x \sim p_{data}} [L_{sc}(x, \hat{x}) + L_{mag}(x, \hat{x})]$$

M: number of STFT losses

Parallel WaveGAN: Training overview

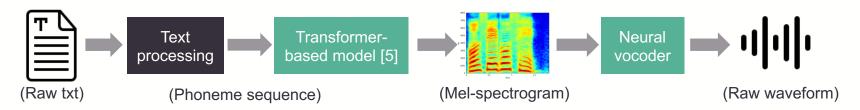


Experiments

1) Analysis/synthesis



2) Text-to-speech



[5] N.Li,et al, "Neural speech synthesis with Transformer network," in Proc. AAAI, 2019.

Experimental conditions

Data & features

Recordings			Size (training / validation / test)	
24 kHz /16 bit, female professional Japanese speaker			11,449 (23 hours) / 250 / 250	
Auxiliary features	Frame shift	Frame length		Frequency range
80-dim log-melspectrogram	12.5 ms	50 ms		70 - 8000 Hz

Vocoder model comparison

- Single Gaussian WaveNet [1,3]
- ClariNet (single / three STFT losses) [3]
- ClariNet-GAN (single / three STFT losses) [6]
- Parallel WaveGAN (single / three STFT losses)

Listening tests

Mean-option score (MOS) listening test on quality and naturalness

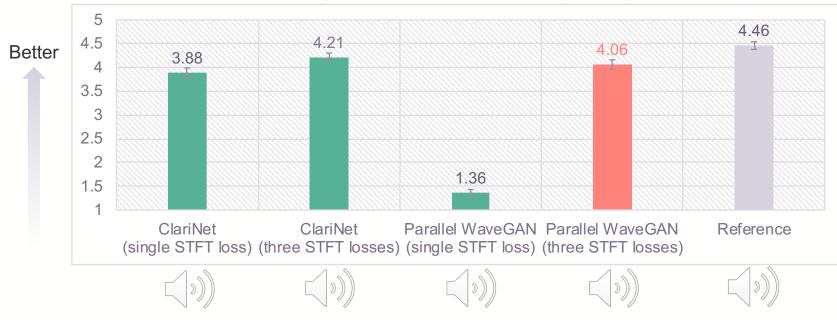
18 native Japanese speakers / 20 random utterances for each model

[1] A. van den Oord et al., "WaveNet: A generative model for raw audio," arXiv preprint arXiv:1609.03499, 2016.

[3] W. Ping, et al., "ClariNet: Parallel wave generation in end-to-end text-to-speech," in Proc. ICLR, 2019.

[6] R. Yamamoto et al., "Probability density distillation with generative adversarial networks for high-quality parallel waveform generation," in Proc. INTER-SPEECH, 2019.

Analysis/synthesis: Effects of multi-resolution STFT loss



MOS listening test results on analysis/synthesis

Using multi-resolution STFT loss largely improved perceptual quality for both ClariNet and Parallel WaveGAN.

Training/inference time and model size comparison

Model	Training time (in days)	Inference speed (k times faster than real-time)	Number of parameters (in millions)
WaveNet	7.4	0.0032	3.81
ClariNet	12.7	14.62	2.78
Parallel WaveGAN (ours)	2.8	28.68	1.44
	Lauren beiten der	Little base to the stress	Lauren beiten der

Lower is better

Higher is better

Lower is better

All training was conducted on a server with two NVIDIA Tesla V100 GPUs. All inference test was conduced on a server with a single NVIDIA Tesla V100 GPU.

Text-to-speech: Perceptual quality evaluation

5 4.46 Better 4.5 4.16 4.14 4 4 3.33 3.5 3 2.5 Transformer+WaveNet Transformer+ClariNet Transformer+ClariNet-GAN Transformer+Parallel Reference (three STFT losses) (three STFT losses) WaveGAN (three STFT losses))

MOS listening test results for TTS

Our model achieved 4.16 MOS competitive to the best distillation-based ClariNet.

Conclusion

Goal

Fast, high-quality and simple waveform generation for text-to-speech (TTS)

Proposed method

Parallel WaveGAN, a distillation-free fast waveform generation, combining multi-resolution STFT loss and adversarial loss.

Results

Comparative perceptual quality (MOS 4.16 in Transformer-based TTS) to the best distillation-based method while improving inference and training speed.

Take-home message: GAN-based methods can be good alternatives to distillation based methods.

14

Acknowledgements

The work was supported by Clova Voice, NAVER Corp., Seongnam, Korea. The authors would like to thank Adrian Kim, Jung-Woo Ha, Muhammad Ferjad Naeem, and Xiaodong Gu at NAVER Corp., Seongnam, Korea, for their support.

Any questions?

ryuichi.yamamoto@linecorp.com

LINE zryuichi

https://r9y9.github.io/demos/projects/icassp2020/