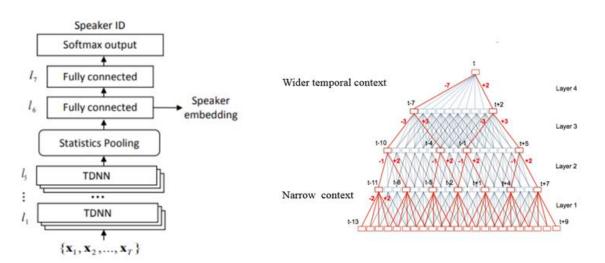
MULTI-RESOLUTION MULTI-HEAD ATTENTION IN DEEP SPEAKER EMBEDDING

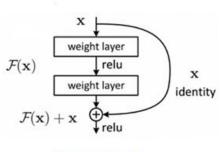
Zhiming Wang, Kaisheng Yao, Xiaolong Li, Shuo Fang Ant Financial Services Group, Hangzhou, China

- **▶Deep Speaker Embedding Framework**
- ➤ Pooling: an Overview
- > the Proposed Pooling Methods
- >Experiments and Results
- **≻**Conclusions

Deep Speaker Embedding Framework

- **▶** Deep Speaker Embedding(x-vector)
- ✓ **DNN**: cepstral acoustic features → a sequence of encoded vector
- ✓ a pooling layer: a segment-level representation(embedding); *today's topic*
- ✓ a classifier(softmax or fully connected network): project to speaker ids
- ✓ outputs at reciprocal a certain layer: embedding feature



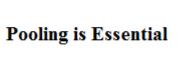


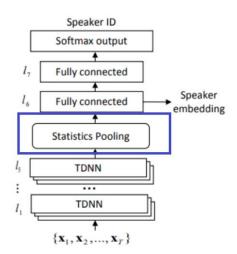
ResNet([17])

- ➤ Deep Speaker Embedding Framework
- **≻**Pooling: an Overview
- > the Proposed Pooling Methods
- >Experiments and Results
- **≻**Conclusions

Pooling(1): an Overview

- ✓ Statistics pooling
- ✓ Self attentive pooling
- ✓ Multi-head attentive pooling(for *increased discriminative information*)
- ✓ Multi-resolution multi-head attentive pooling(for *encouraging diversity from multiple heads*)





Pooling(2): an Overview

>Statistics pooling

✓ mean + std: capture *overall information* and *dynamical variability*

> Self attentive pooling

✓ compute importance of each frame

$$\alpha_t = \frac{e^{(s_d(\mathbf{h}_t))}}{\sum_{i=1}^N e^{(s_d(\mathbf{h}_j))}}$$
$$\mathbf{e} = \sum_{t=1}^N \alpha_t \mathbf{h}_t$$

$$s_l^{(i)}(x) = \mathbf{V}_i^T f(\mathbf{W}_i x + \mathbf{g}_i) + b_i,$$
 MLP

where $f(\cdot)$ is a non-linear activation function, $\mathbf{W}_i \in \mathbb{R}^{l \times l}$, $\mathbf{g}_i \in \mathbb{R}^l$, $\mathbf{V}_i \in \mathbb{R}^l$ and $b_i \in \mathbb{R}$ are parameters to learn.

>Attentive statistics pooling

✓ mean + std: using self attentive weigh α_t , NOT in average with $\alpha_t = 1/N$

Pooling(3): an Overview

- ➤ Multi-head attentive pooling([1])
- ✓ split the encoded frame into non-overlapping homogeneous sub-vectors
- ✓ apply attentive pooling on frame sequence of sub-vectors
- \checkmark may ignore possible correlations among different sub-vectors, especially for \mathbf{h}_t with small dimensional size

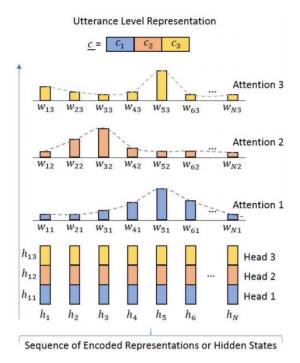
$$\mathbf{h}_{t} = [\mathbf{h}_{t}^{(1)}, \mathbf{h}_{t}^{(2)}, \cdots, \mathbf{h}_{t}^{(K)}]$$

$$\alpha_{t}^{(i)} = \frac{e^{(s_{d/K}^{(i)}(\mathbf{h}_{t}^{(i)}))}}{\sum_{j=1}^{N} e^{(s_{d/K}^{(i)}(\mathbf{h}_{j}^{(i)}))}} \qquad s_{l}^{(i)}(x) = \mathbf{V}_{i}^{T}x,$$

$$\mathbf{V}_{i} \in \mathbb{R}^{l}$$

$$\mathbf{e}^{(i)} = \sum_{t=1}^{N} \alpha_{t}^{(i)} \mathbf{h}_{t}^{(i)}$$

$$\mathbf{e} = [\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \cdots, \mathbf{e}^{(K)}]$$



- > the Framework of Deep Speaker Embedding
- ➤ Pooling: an Overview
- **▶** The Proposed Pooling Methods
- >Experiments and Results
- **≻**Conclusions

The Proposed Pooling Methods(1)

- ➤ Global multi-head attentive pooling
- ✓ Apply K-head attention over the entire encoded sequence

$$s_l^{(i)}(x) = \mathbf{V}_i^T f(\mathbf{W}_i x + \mathbf{g}_i) + b_i$$

$$\alpha_t^{(i)} = \frac{e^{(s_d^{(i)}(\mathbf{h}_t))}}{\sum_{j=1}^N e^{(s_d^{(i)}(\mathbf{h}_j))}}$$

$$\mathbf{e}^{(i)} = \sum_{t=1}^N \alpha_t^{(i)} \mathbf{h}_t$$

$$\mathbf{e} = (\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \dots, \mathbf{e}^{(K)})$$

The Proposed Pooling Methods(2)

- ➤ Multi-resolution multi-head attentive pooling(for diversity)
- ✓ Increasing T will make $\alpha_T(z_i)$ less sharper, thus with lower resolution
- ✓ As T → infinity, $\alpha_T(z_i) = 1/N$, average pooling: bridge between attentive and statistical pooling

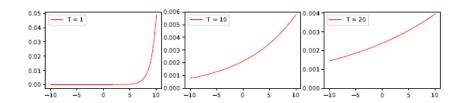


Fig. 1. The function curves of $\alpha_T(z_i) = \frac{e^{(z_i/T)}}{\sum_j e^{(z_j/T)}}$ as T varies.

$$s_l^{(i)}(x) = \mathbf{V}_i^T f(\mathbf{W}_i x + \mathbf{g}_i) + b_i$$

$$\alpha_t^{(i)} = \frac{e^{(s_d^{(i)}(\mathbf{h}_t)/T_i)}}{\sum_{j=1}^N e^{(s_d^{(i)}(\mathbf{h}_j)/T_i)}} \qquad \text{T_i = 1: global multi-head attention}$$

$$\mathbf{e}^{(i)} = \sum_{t=1}^N \alpha_t^{(i)} \mathbf{h}_t$$

$$\mathbf{e} = (\mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \cdots, \mathbf{e}^{(K)})$$

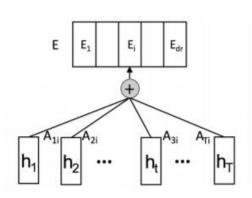
The Proposed Pooling Methods(3)

- Compared with Povey's method[6], using a penalty regularization in training objective to encourage diversity
- ✓ attentive weights from different heads are orthogonal: *a stronger requirement*
- ✓ not guarantee the approximate orthogonality of attentive weights during prediction
- ✓ our method: achieve diversity of extracted speech characteristics through the learned multiresolution attentive model

$$\mathbf{A} = softmax(g(\mathbf{H}^T \mathbf{W}_1) \mathbf{W}_2) \tag{1}$$

$$\mathbf{E} = \mathbf{H}\mathbf{A} \tag{2}$$

$$P = \|(\mathbf{A}^T \mathbf{A} - \mathbf{I})\|_F^2 \tag{3}$$



- > the Framework of Deep Speaker Embedding
- ➤ Pooling: an Overview
- > the Proposed Pooling Methods
- >Experiments and Results
- **≻**Conclusions

Experiments and Results(1)

- 1. dataset: VoxCeleb1
- 2. input features: 40-dimensional log-Mel filter banks
- 3. network architecture. 34-layer convolution ResNet
- 4. loss function: additive cosine margin softmax
- 5. optimizer: RAdam

$$\mathcal{L}_{CosAMS} = -\frac{1}{B} \sum_{u=1}^{B} \log \frac{e^{\eta(\cos(\theta < \mathbf{x}_{u}, \mathbf{w}_{y_{u}} >) - m)}}{Z_{\mathbf{x}_{u}}},$$

$$Z_{\mathbf{x}_{u}} = e^{\eta(\cos(\theta < \mathbf{x}_{u}, \mathbf{w}_{y_{u}} >) - m)} + \sum_{j \neq y_{u}} e^{\eta\cos(\theta < \mathbf{x}_{u}, \mathbf{w}_{j} >)},$$

LayerConfigurationConv1 $(3 \times 3, 64)$, stride (1×1) Res1 $[(3 \times 3, 64)_2] \times 3$ Res2 $[(3 \times 3, 128)_2] \times 4$ Res3 $[(3 \times 3, 256)_2] \times 6$ Res4 $[(3 \times 3, 512)_2] \times 3$ Conv2 $(3 \times 3, 512)$, stride (1×3) Poolingpooling as represented in Sec.2Linear1output-dimension-of-pooling \times 512					
$ \begin{array}{c c} \operatorname{Res1} & \left[(3 \times 3, 64)_2 \right] \times 3 \\ \operatorname{Res2} & \left[(3 \times 3, 128)_2 \right] \times 4 \\ \operatorname{Res3} & \left[(3 \times 3, 256)_2 \right] \times 6 \\ \operatorname{Res4} & \left[(3 \times 3, 512)_2 \right] \times 3 \\ \operatorname{Conv2} & \left(3 \times 3, 512 \right), \operatorname{stride} \left(1 \times 3 \right) \\ \operatorname{Pooling} & \operatorname{pooling} \operatorname{as} \operatorname{represented in Sec.2} \\ \operatorname{Linear1} & \operatorname{output-dimension-of-pooling} \times 512 \\ \end{array} $	Layer	Configuration			
Res2 $[(3 \times 3, 128)_2] \times 4$ Res3 $[(3 \times 3, 256)_2] \times 6$ Res4 $[(3 \times 3, 512)_2] \times 3$ Conv2 $(3 \times 3, 512)$, stride (1×3) Poolingpooling as represented in Sec.2Linear1output-dimension-of-pooling \times 512	Conv1	$(3 \times 3, 64)$, stride (1×1)			
Res3 $[(3 \times 3, 256)_2] \times 6$ Res4 $[(3 \times 3, 512)_2] \times 3$ Conv2 $(3 \times 3, 512)$, stride (1×3) Poolingpooling as represented in Sec.2Linear1output-dimension-of-pooling \times 512	Res1	- · · · · · · · · · · · · · · · · · · ·			
Res4 $[(3 \times 3, 512)_2] \times 3$ Conv2 $(3 \times 3, 512)$, stride (1×3) Pooling pooling as represented in Sec.2 Linear1 output-dimension-of-pooling \times 512	Res2	$[(3\times3,128)_2]\times4$			
Conv2 $(3 \times 3, 512)$, stride (1×3) Poolingpooling as represented in Sec.2Linear1output-dimension-of-pooling \times 512	Res3				
Pooling pooling as represented in Sec.2 Linear1 output-dimension-of-pooling × 512	Res4				
Linear1 output-dimension-of-pooling × 512	Conv2	$(3 \times 3, 512)$, stride (1×3)			
1 1	Pooling	pooling as represented in Sec.2			
	Linear1	output-dimension-of-pooling \times 512			
Linear2 512 × 512	Linear2	512 × 512			
Classifier $512 \times C, C = 1211$	Classifier	$512 \times C, C = 1211$			

Experiments and Results(2)

	Front-end	Approaches	Loss	Dims	EER(%)
Nagrani et al. [15]	i-vector	PLDA	-	200	8.8
	VGG-M	adaptive average pooling	Softmax	1024	10.2
	VGG-M	adaptive average pooling	Contrastive	1024	7.8
W. Cai et al. [20]	ResNet-34	temporal average pooling	ASoftmax	128	5.27
	ResNet-34	self-attentive pooling	ASoftmax	128	4.9
	ResNet-34	learnable dictionary encoding(LDE)	ASoftmax	128	4.56
Our baselines	ResNet-34	attentive statistics pooling	CosAMS	512	4.258
	ResNet-34	multi-head attention($K = 4$), with Eq.(1)	CosAMS	512	4.385
	ResNet-34	multi-head attention($K = 4$), with Eq.(5)	CosAMS	512	4.464
Our proposals	ResNet-34	global multi-head attention($K = 4$)	CosAMS	512	4.178
	ResNet-34	multi-resolution multi-head attention($K = 4$)	CosAMS	512	4.1
	ResNet-34	global multi-head attention($K = 5$)	CosAMS	512	4.109
	ResNet-34	multi-resolution multi-head attention($K = 5$)	CosAMS	512	3.982
	ResNet-34	global multi-head attention($K = 6$)	CosAMS	512	4.146
	ResNet-34	multi-resolution multi-head attention($K = 6$)	CosAMS	512	3.966

Table 3. Results for verification on the test set of VoxCeleb1, all using the development set of VoxCeleb1 for training. "ASoftmax" represents angular softmax loss.

Experiments and Results(3)

- > multi-resolution multi-head attention
- ✓ capture different views of speech characteristics
- ✓ less uncertain (lower entropy) in achieving discriminative information, representative of being more regularized

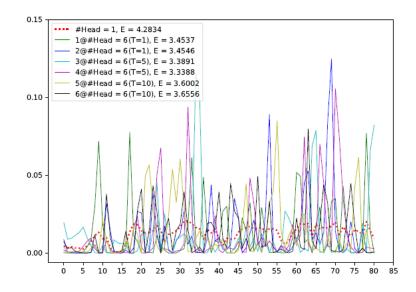


Fig. 2. The self-attentive weights from single-head vs. multi-resolution multi-head attention along the temporal axis, given the same test speech; much more attention is paid to the frames of higher weight scores. $E(=-\sum_t \alpha_t log(\alpha_t))$ is the entropy.

- ➤ Deep Speaker Embedding Framework
- ➤ Pooling: an Overview
- ➤ The Proposed Pooling Methods
- >Experiments and Results
- **Conclusions**

Conclusions

- proposed global and multi-resolution multi-head attention
- > consistent improvement on top of that achieved with increased number of attention heads
- > Why
- ✓ analyzing speech segments as a whole
- **✓** multiple views from different attention heads with various resolutions
- ✓ improved certainty on each head

Thank you!

Q & A