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Emerging IoT devices

IoT is widely used in industry.

IoT devices are increasing exponentially.

Huge data is to be mined. A difficult task.

Figure: IoT devices ecosystem
Figure: Number of connected IoT devices
(Billion)
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Centralized process of data mining from IoT

Typically, we need to

1 transmit raw data from all agents to a
central device.

2 upload data to a cloud center.
3 apply data mining algorithms.

Challenges

Data volume
Communication latency
Information security

We need distributed methods to mine IoT data!

Figure: Centralized IoT system to
Distributed IoT system.
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Why distributed clustering?

Clustering analysis is widely used in
hidden information mining.

Most clustering algorithms are
cost-efficient so that IoT devices are
able to implement them.

K-means (K-means++) is the most
popular and effective algorithm among
plentiful clustering methods.

Figure: Clustering analysis in transportation,
industry, and environment IoT
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k-means algorithm

Step 1: (b) Initialize the centroids.

Step 2: (c) Assign each observation to the cluster with the closest centroid.

Step 3: (d) Update centroids as the average of the corresponding clusters.

Repeat Step 2 and 3 until convergence.
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Distributed clustering

M agents, each with an observation set X (m),m = 1, · · · ,M .

To conduct clustering analysis to X = ∪M
m=1X (m), and to return K centroids ck,

k = 1, · · · ,K.

Each agent keeps its own version of centroids c
(m)
k , c

(1)
k = c

(2)
k = · · · = c

(M)
k = ck.
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Difficulty

How to make all agents agree on the centroids?
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Existing methods

min F (e.g. in-cluster error)

s.t. c
(i)
k = c

(j)
k

for k = 1, · · · ,K and agents(i, j) connected

Pedro A Forero, Alfonso Cano, and Georgios B Giannakis, “Distributed clustering
using wireless sensor networks,” IEEE Journal of Selected Topics in Signal
Processing, 2011

Soummya Kar and Brian Swenson, “Clustering with distributed data,” arXiv
preprint arXiv:1901.00214, 2019
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Existing methods

min F + λ · dist(c(i)k , c
(j)
k )

for k = 1, · · · ,K and agents(i, j) connected.

Disadvantages:

no theoretical gaurantee on clustering quality;

slow convergence when data is huge.
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Another idea

How to make all agents agree on the centroids?

Distributed consensus
To get all agents in a network to agree on some specific value.
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Our method

How to do k-means in a distributed setting:

reassign observations X

update centers for k = 1, · · · ,K

ck ←

∑M
m

∑
x∈P

(m)
k

x∑M
m | P

(m)
k |

,

where P
(m)
k is the k-th cluster of agent m.∑M

m

∑
x∈P

(m)
k

x∑M
m | P

(m)
k |

=

1
M

∑M
m

∑
x∈P

(m)
k

x

1
M

∑M
m | P

(m)
k |

=
average of

∑
x∈P

(m)
k

x

average of | P (m)
k |

.

Calculation of ck is amenable to average-consensus!X

Core idea: summation & average.
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Implementation

The distributed k-means++1 initialization ⇒ faster convergence and theoretical
gaurantee on clustering quality.

Most average consensus algorithms are merely asymptotically correct. We use a
finite-time average-consensus algorithm2 ⇒ exactly k-means.

1David Arthur and Sergei Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

2Shreyas Sundaram and Christoforos N Hadjicostis, “Finite- time distributed
consensus in graphs with time-invariant topologies,” in 2007 American Control
Conference. IEEE, 2007, pp. 711–716.
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Distributed k-means
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Data sets and network topology

Table: Data Set Descriptions. (N: # points,
D: # features)

ID Data Set N D

1 S4 5000 2
2 Cloud 1024 10
3 Air-Quality Data 35065 18
4 Activity recognition 75128 9
5 Wave Energy Converters 72000 49
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Figure: An example of network
topology diagram with nodes = 50.
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Comparison with centralized algorithms

DKM, DKM++
iterations almost
completely match the
CKM, CKM++.

K-means++ outperforms
RI in terms of
convergence rate and
clustering quality.
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Figure: Average SSE curves of DKM and CKM with
K = 10, 20 and two initialization methods: Random
initialization (RI) and K-means++ (or DKM++ in distributed
cases), S4 data set (ID: 1), 100 Monte Carlo runs.
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Comparison with DCWSN

Table: Performance comparison between
DKM and DCWSN

Data Set ID Index DKM++ DCWSN-Z DCWSN-P

1
SSE 2.91E+03 3.09E+03 2.99E+03

Ratio 1.00 1.06 1.03

2
SSE 1.52E+07 1.74E+07 1.63E+07

Ratio 1.00 1.15 1.07

3
SSE 1.53E+09 1.58E+09 1.57E+09

Ratio 1.00 1.03 1.02

4
SSE 6.91E+07 1.25E+08 1.17E+08

Ratio 1.00 1.81 1.70

5
SSE 1.12E+14 1.17E+14 1.14E+14

Ratio 1.00 1.04 1.02
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Figure: SSE curves of three algorithms,
Cloud data set (ID: 2), 10 Monte Carlo
runs.

Compared with existing work DCWSN, the proposed DKM and DKM++ have

Better clustering quality

Faster convergence
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Case study: DKM in environmental monitoring stations

A network composed by environmental monitoring stations (agents).

Clustering analysis for environmental monitoring station data sets.

Study weather and air pollution patterns of the area.

Figure: A typical environmental monitoring
station

Figure: A network of environmental monitoring
stations
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Conclusion and Discussion

Distributed K-means and K-means++.

Same performance with the centralized counterparts but with less data traffic.

Better performance than the existing distributed clustering algorithms.

A journal article that covers distributed soft clustering and hard clustering
algorithms:

H. Yu, H. Chen, S. Zhao and Q. Shi, ”Distributed Soft Clustering Algorithm For
IoT Based on Finite Time Average Consensus,” in IEEE Internet of Things Journal.
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Thank you for listening.

Stay strong, stay safe!
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