Towards Fast and Accurate Streaming End-To-End ASR

Presenter: Bo Li (boboli@google.com)

Authors: Bo Li, Shuo-yiin Chang, Tara N. Sainath, Ruoming Pang, Yanzhang He, Trevor Strohman, Yonghui Wu

ICASSP 2020

Modeling End-Of-Utterance (EOU) jointly with ASR in RNN-T for better latency.

RNN-T EP

Accurate EOU Timing

Based on **time alignment** of the end of last word. Adding **early and late penalties** for EOU predictions.

Reducing Premature EOU

EOU terminates beam search paths during inference. Sequence training with **MWER**.

Trading WER for Latency

Sacrifice WER for latency in the 1st pass RNN-T decoding. Recover WER gains via **2nd pass LAS rescoring**.

[2] Bo Li, et.al, "Towards Fast and Accurate Streaming End-to-End ASR", submitted to ICASSP 2020

 $\log P_{\text{RNN-T}}(y_U | \mathbf{x}_t) - \max(0, \ \alpha_{\text{early}} * (t_{</s>} - t)) - \max(0, \ \alpha_{\text{late}} * (t - t_{</s>} - t_{\text{buffer}}))$

Reducing Premature EOU

Sequence training using Minimum Word Error Rate (MWER) is adopted to address this issue.

Trading WER for Latency

Experiment Setup

- Dataset:
 - Human transcribed audio-text pairs from a variety of domains: Search, Farfield, Telephony, YouTube [<u>A. Narayanan et al., ASRU 2019</u>]
- Features:
 - Log-mel Filterbanks together with a 1-hot vector of the domain-id to help with modeling domain variations [<u>B. Li *et al.*, ICASSP 2018</u>].
- Models:
 - 1st-pass RNN-T model [<u>Y. He et al. 2018</u>]: 120M parameters, 4096 Word Piece Model
 - 2nd-pass LAS model [<u>T.N. Sainath *et al.* 2019</u>]: 33M parameters
- Metrics:
 - Word error rate (WER)
 - Median latency (EP50) and 90-percentile latency (EP90)

Baselines

	RNN-T	+EP
WER	7.2	7.5
EP50	540	410
EP90	910	710

increase in deletion errors

Joint modeling of EOU in RNN-T with ASR helps reducing latency but hurts quality.

Early & Late Penalties

	RNN-T	+EP	+Early&Late
WER	7.2	7.5	7.2
EP50	540	410	380
EP90	910	710	850

Constraining EOU prediction time during training via early and late penalties helps both quality and latency, although EP90 gain is relatively small.

Sequence Training

	RNN-T	+EP	+Early&Late	+MWER	-Early
WER	7.2	7.5	7.2	7.2	6.9
EP50	540	410	380	430	380
EP90	910	710	850	630	580

MWER already penalizes premature EOU prediction, rendering early penalty unnecessary.

MWER without early penalty improves both qualty and latency: WER: rel. 4.2% EP50: 160 ms

EP90: 330 ms

2nd Pass Rescoring

	RNN-T	+EP	+Early&Late	+MWER	-Early
WER	7.2	7.5	7.2	7.2	6.9
EP50	540	410	380	430	380
EP90	910	710	850	630	580

LAS largely improves quality, 11.1% rel. WER reduction.

	+LAS	+ignore RNN-T EOU score	
WER	6.4	6.6	This simulates RNN-T + LAS. RNN-T EP + LAS is a more
EP50	380/ <mark>370</mark>	370	systematic way of combining EOU scores.
EP90	850/ <mark>740</mark>	740	

Final System

	RNN-T	+EP	+Early&Late
WER	7.2	7.5	7.2
EP50	540	410	380
EP90	910	710	850

MWER training of both the RNN-T and LAS gives the best quality and latency: WER: rel. 15.3% EP50: 170 ms EP90: 360 ms

	+LAS	+MWER LAS	+MWER ALL
WER	6.4	6.2	6.1
EP50	380/370	350	370
EP90	850/740	620	550

Analysis

The proposed systems are consistently better:

Accurate EOU Timing through early and late penalties.

Based on **time alignment** of the end of last word. Adding **early and late penalties** for EOU predictions.

Reducing Premature EOU via MWER sequence training.

EOU terminates beam search paths during inference. Sequence training with **MWER**.

Trading WER for Latency via 2nd pass LAS rescoring.

Sacrifice WER for latency in the 1st pass RNN-T decoding. Recover WER gains via 2nd pass LAS rescoring.

Thank you!

Contacts: {boboli, shuoyiin}@google.com