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Motivation and Applications

1. Standard convolutional sparse coding algorithms are not fast [Sreter et al., ICASSP, 2018].

2. Convex-relaxation of standard CSC [Garcia and Wohlberg, TCI,  2018].

5. Train an efficient sparse-coding network that results in high-quality reconstruction.

6. Image denoising and inpainting applications.

3. Convex-relaxation for sparse coding results in biased estimates [Selesnick, TSP, 2017].

4. Objective: To develop an efficient non-convex CSC formulation. 
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Sparse Coding
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1. The actual sparse coding problem (NP-hard):

2. Convex relaxation of the above problem:

Pros:

1.   Biased amplitude estimates [Selesnick, TSP, 2017].

2.   Inefficient for large number of patches.

3.   Loss of spatial continuity.

4.   Lack of translation-invariance.

min kXk0 s.t. kY �DXk2F  ✏.

min
X

1
2kY �DXk2F + �kXk1.

Cons:

1. Convex cost with global convergence guarantees.

2. Fast algorithms.



Sparse Coding: l1 minimization

5/30

LASSO minimization problem [Candès and Plan, Annals Stat., 2009]:

min
X

1
2kY �DXk2F + �kXk1,

where is the regularization parameter.�

Xk+1 = ��⌘

�
(I � ⌘DTD)Xk + ⌘DTY

�
,

Iterative Soft-Thresholding Algorithm (ISTA) update [Daubechies et al., CPAM, 2004]:

where �⇤⌘(·) is the soft-thresholding elementwise operator with threshold

⇤⌘ and ⌘ is the step-size.where is the element-wise soft-thresholding operator; is the step-size.��⌘

Faster ISTA update [Beck and Teboulle, SIAM, 2009]:

tk+1 =
1+

p
1+4t2k
2 .where Xk+1 is the ISTA update and

Yk+1 = tk+1Xk+1 + tk�1
tk+1

(Xk+1 �Xk),



LISTA: Learned ISTA

Learned ISTA [Gregor and LeCun, ICML, 2010]: Proximal operator and 
{U,V,�}

V�� V��V��

U

+ + + X̂

Y

LISTA: Deep-unfolding architecture

Loss function: 

L(X?, X̂;U,V,�) = 1
2kX

? � X̂k2F.

Xk+1 = ��

�
VXk +UY

�
.

Three-layered LISTA architecture is shown below:

affine transformations made learnable:   
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Limitations of LISTA

Poor support recovery, biased amplitude estimates, and lack of interpretability 

Patch-based method: Loss of spatial continuity,  inefficient for large number of 

between sparsity and shrinkage [Pokala et al., ICASSP., 2020].

patches, and lack of translation-invariance [Sreter and Giryes, ICASSP,  2018].
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Minimax-Concave Penalty Sparse Regularization

Minimax-concave regularization for sparse recovery [Zhang, Annals Stat., 2010]:

where is the regularization parameter.

Iterative Firm-Thresholding Algorithm (IFTA) update [Pokala et al., ICASSP, 2019]:

where �⇤⌘(·) is the soft-thresholding elementwise operator with threshold

⇤⌘ and ⌘ is the step-size.where is the element-wise firm-thresholding operator, is the step-size and

�

IFTA: nearly unbiased estimates, slow convergence, and lack of global 

min
X

1
2kY �DXk2F + �kXkMC,

F�⌘

Xk+1 = F�⌘

�
(I � ⌘DTD)Xk + ⌘DTY; �

�
,

is the parameter of minimax-concave penalty.�

convergence guarantees.
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Learned Sparse Coding: FirmNet
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FirmNet [Pokala et al., ICASSP, 2019] learnable parameters  

Loss function (    is a small positive number) :

Xk+1 = F�

�
VXk +UY;�

�
.

{U,V,�,�}:

Limitation: Patch-based method

Overcomes limitations: Inaccurate support recovery and biased estimates for amplitudes.

�

Solution: Use a convolutional structure.

Deep-unfolding of IFTA FirmNet

L(X?, X̂) =

(
1
2kX

? � X̂k2F, for kX? � X̂kF  �,

�
⇣
kX? � X̂kF � �/2

⌘
, Otherwise.

(1)



Convolutional Sparse Coding

Convolutional sparse coding (CSC) operates on the whole image.

CSC overcomes the limitations of patch-based approaches.

CSC employs a convolutional dictionary.

min
d,Z={Zi}m

i=1

kX�
mX

i=1

di ⇤ Zik2F + �
mX

i=1

kZik1 (1)

s.t. kdik22  1 i = 1 tom. (1)

Given findX, kernels (di) and sparse feature maps (Zi), 8i 2 {1,m}.

s.t. X =
Pm

i=1
Zidi

⇤
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Convolutional Extension of ISTA

ISTA update

is a concatenation of Toeplitz matrices. D

Convolutional ISTA update

Zk+1 = ��⌘

�
(I � ⌘DTD)Zk + ⌘DTY

�
,

Zk+1 = ��⌘

⇣
Zk � ⌘d̂ ⇤ d ⇤ Zk + ⌘d̂ ⇤Y

⌘
,

d̂ = dT
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Convolutional LISTA
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{we,wd,�}.
Convolutional LISTA [Sreter and Giryes, ICASSP,  2018]: Replaces convolutional kernels

Convolutional ISTA update

Zk+1 = ��⌘

⇣
Zk � ⌘d̂ ⇤ d ⇤ Zk + ⌘d̂ ⇤Y

⌘
,

d̂ = dT

Convolutional LISTA: kth layer

and parameters of the nonlinearity with the learnable parameters:

Zk+1 = ��

�
Zk �we ⇤wd ⇤ Zk +we ⇤Y

�



Contributions

1. Minimax-concave regularized CSC (MC2SC).


2.  Convolutional IFTA (CIFTA) based on successive convex approximation (SCA).


3.  Deep-unfolding of CIFTA             Convolutional FirmNet (ConFirmNet).


4.  Auto-encoder based on Convolutional FirmNet.


5.  Application to image denoising and inpainting.
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Scalar Minimax-Concave Penalty
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Zhang [Annals Stat., 2010] introduced the scalar MCP, which is a non-convex relaxation to

 the     - pseudonorm:

g↵(x) =

8
><

>:

|x|� 1

2
↵

2
x

2
, |x|  1

↵

2
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1
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2
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MCP Regularized CSC
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The minimax-concave (MC) regularized convolutional sparse coding (MC2SC):

kZikMC =
X

w,h

✓
|Zwh

i |� |Zwh
i |2

2�i�i

◆
1{|Zwh

i |�i�i}

+

✓
�i�i
2

◆
1{|Zwh

i |��i�i},

(1)

where

1

{X,Zi} 2 Rw⇥h.

denotes the indicator operator, M 2 {0, 1}w⇥h, � element-wise multiplication,

min
d,Z={Zi}m

i=1

(
F (Z)=kX�M�

mX

i=1

di⇤Zik2F+�
mX

i=1

kZikMC

)
, s.t. kdik22  1, i = 1 : m,

(1)

, and Zwh
i = [Zi]wh.



Successive Convex Approximation

where F (Z) is convex for � > 1, unique minima exists, and it is given by,

where | · |sgn

1

is the element-wise signum operator, is the element-wise absolute operator,

is the matrix of all ones.and

F�,�(U) = arg min
Z

1

2⌘
kZ�Uk2F + �kZkMC

| {z }
F (Z)

, (1)

F�,�(U)=

8
>><

>>:

0, |U|  �1,
�

� � 1
1� (|U|� �1)� sgn(U),�1 < |U|  ��1,

U, |U| > ��1,
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Convolutional IFTA

MC2SC problem: solved via convex subproblems constructed by SCA.

f(Z) = 1
2kX�M�

Pm
i=1 di ⇤ Zik2Fwhere and Z = [Z1,Z2, . . . ,Zm]T.

where U = Zt � ⌘rf(Zt).Zt+1 = F�,�(U),SCA results in

SCA possesses local steepest-descent property.

Convergence guarantees: CIFTA reaches a stationary point.

Zt+1 = arg min
Z

1

2⌘
kZ� {Zt � ⌘rf(Zt)}k2F + �

mX

i=1

kZikMC, (1)
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Convolutional FirmNet: Deep-Unfolding of CIFTA

Convolutional IFTA update: Zk+1 = F�,�

�
Zk �we ⇤wd ⇤ Zk +we ⇤Y

�
.

Convolutional FirmNet: Recurrent architecture for CSC with one layer.

: sparse feature maps at the output of the first layer. Z1

we⇤Y

F�,�
we

conv
wd

conv � + F�,�
Z1

One step of CSC

ConFirmNet: Convolutional FirmNet with a Single  Layer
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Auto-Encoder Based on Convolutional FirmNet

Input Image ConFirmNet

(L layers) ZL

wd

Conv
Y Ŷ

Output image

Convolutional Sparse Encoder Convolutional Dictionary

Train end-to-end as sparse auto-encoder.

Auto-encoder structure based on ConFirmNet:  Learn approximate sparse coding

and dictionary.
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Experimental Validation
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Training a sparse auto-encoder based on ConFirmNet:

1. Filter weights are randomly initialized from a uniform distribution.

2. Kernels of size: 3 x 3

3. Dataset: PASCAL VOC [Evaringam et al., IJCV, 2010].

5. Number of layers: 20

4. Training data: Testing data = 80 : 20.

{�, �} are initialized with vector of all entries equal to 0.5 and 5.0, respectively.6.

7. Number of kernels: 256.

8. Additive white Gaussian noise is considered for image denoising. 



Experimental Validation
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Training cost:

M = 11T for  the image denoising, where1denotes a 256-dimensional vector of all ones.

M 2 {0, 1}256⇥256 is the binary mask drawn independently from a Bernoulli distribution

with a probability 0.5 for image inpainting.

where � > 0. We set � = 1 in our experiments.

L(Y?, Ŷ) =

(
1
2kY

? � Ŷk2F, for kY? � ŶkF  �,

�
⇣
kY? � ŶkF � �/2

⌘
, Otherwise

(1)



Image Denoising

Testing scenario: Average and standard deviation of PSNR [dB] are evaluated 
based on 20 noise realizations.

Model trained on noisy images (    of 30). �

22/30

Image BM3D ConLISTA ConFirmNet

Peppers 29.30±0.06 29.64±0.08 29.78±0.07
Goldhill 29.09±0.03 29.06±0.02 29.12±0.02
Man 28.82±0.03 28.96±0.03 29.01±0.02
Lena 31.23±0.03 31.14±0.04 31.28±0.04
Cameraman 28.60±0.06 28.85±0.06 29.12±0.06
Barbara 29.76±0.02 27.84±0.01 28.24±0.02
House 32.15±0.08 31.98±0.06 32.08±0.08
Couple 28.84±0.03 28.91±0.02 29.01±0.03
Boats 29.05±0.03 29.02±0.03 29.12±0.02

Table 1: Image denoising: PSNR [dB] (mean

±
std) over 20 noise realizations drawn

from a Gaussian distribution with � = 30. Number of kernels = 256 and kernel size

= 3⇥ 3.

1



Image Denoising: Robustness of ConFirmNet
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Performance comparison: Training and testing noise mismatch

The model is trained with a standard deviation of 20.

Mean and standard deviation of PSNR [dB] computed based on 20 noise realizations.

Image

Convolutional LISTA ConFirmNet

� = 5 � = 15 � = 30 � = 5 � = 15 � = 30

Barbara 31.23±0.011 30.97±0.020 22.73±0.024 31.85±
0.011 31.46±

0.020 22.96±
0.028

Goldhill 30.80±0.008 30.91±0.016 22.74±0.026 30.83±
0.007 30.98±

0.016 23.03±
0.027

Man 31.01±0.008 31.14±0.026 22.76±0.028 31.07±
0.009 31.15±

0.024 23.02±
0.028

Peppers 32.82±0.017 32.43±0.053 23.10±0.065 33.03±
0.023 32.55±

0.054 23.22±
0.061

Lena 33.79±0.008 33.59±0.028 22.97±0.030 34.06±
0.008 33.74±

0.029 23.29±
0.030

Cameraman 31.13±0.014 31.18±0.058 23.10±0.044 31.28±
0.015 31.28±

0.056 23.35±
0.048

House 34.57±0.019 34.16±0.048 22.98±0.049 34.92±
0.019 34.39±

0.048 23.30±
0.053

Couple 31.47±0.100 31.35±0.019 22.80±0.026 31.63±
0.009 31.44±

0.020 23.00±
0.024

Boats 31.29±0.005 31.23±0.024 22.81±0.027 31.48±
0.007 31.37±

0.021 23.06±
0.030

Table 1: Image denoising: ConFirmNet versus convolutional LISTA trained at

� = 20 and tested with di↵erent values of �.

1



Visual Inspection

Original Image Noisy Image

BM3D, 29.24 dB Convolutional LISTA, 

29.47 dB

ConFirmNet, 29.73 dB

Image denoising performance comparison for noise standard deviation of 30.

24/30



Image Inpainting
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Image Index

⇤
FFCSC Con LISTA ConFirmNet

1 24.56±0.021 25.83±0.031 25.86±0.029
2 26.08±0.027 28.86±0.046 28.89 ±0.048
3 25.85±0.014 27.06±0.046 27.09±0.045
4 24.37±0.016 25.43±0.021 25.50±0.021
5 28.07±0.020 29.71±0.047 29.68±0.049
6 24.90±0.014 29.54±0.048 29.58±0.046
7 24.43±0.017 25.87±0.031 26.02±0.027
8 26.88±0.034 27.24±0.051 27.28±0.057
9 24.43±0.016 25.73±0.032 25.79±0.027
10 26.93±0.034 28.51±0.038 28.63±0.039

Table 1: Image inpainting: Test image index is the same as that mentioned

in [?]; � = 20, mask pixel with probability = 0.5.

1

Performance comparison on test images used in [Heide et al., CVPR, 2015]  and 

[Sreter and Giryes, ICASSP,  2018].
Binary mask probability = 0.5.

Test image index* is the same as that mentioned in [Sreter and Giryes, ICASSP,  2018].

Performance comparison in terms of PSNR [dB]



Visual Inspection

Convolutional LISTA

27.65 dB

ConFirmNet

27.87 dBCorrupted Image

Image inpainting; Mask probability = 0.5.
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Conclusions
1. We proposed minimax-concave regularized convolutional sparse coding problem 

(MC2SC) and developed the convolutional iterative firm-thresholding algorithm 
(CIFTA) to solve it.


2.   Deep-unfolding of CIFTA 


3.   ConFirmNet is superior to the other techniques with application to image denoising 

      and inpainting. Further, it is robust to mismatch between the training and testing

      noise conditions.


4.  Computational complexity comparable to that of convolutional LISTA.

Convolutional FirmNet (ConFirmNet).

27/30



Key References

P. K. Pokala, A. G. Mahurkar, and C. S. Seelamantula, “FirmNet: A sparsity amplified deep 
network for solving linear inverse problems,” in Proceedings of the IEEE International 
Conference on Acoustics, Speech and Signal Processing, pp. 2982-2986, 2019.

[2] 

[3] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” in Proceeding of  
the 27th International Conference on Machine Learning, pp. 399-406, 2010.
F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional sparse coding,” in 
Proceedings of the IEEE International Conference on Computer Vision and Pattern 
Recognition, pp. 5135-5143, 2015.

[4] 

[1] H. Sreter and R. Giryes, “Learned convolutional sparse coding,” in Proceedings of the IEEE 
International Conference on Acoustics, Speech and Signal Processing, pp. 2191-2195, 2018.

V. Papyan, Y. Romano, J. Sulam and M. Elad, “Convolutional dictionary learning via local 
processing,” in Proceedings of the IEEE International Conference on Computer Vision and 
Pattern Recognition, pp. 5296-5304, 2017.

[5] 

B. Wohlberg, “Efficient algorithms for convolutional sparse representations,” IEEE Transaction 
on Image Processing, vol. 25, no. 1, pp. 301-315, 2015.

[6] 

C-H. Zhang, “Nearly unbiased variable selection under minimax-concave penalty,” The Annals 
of Statistics, vol. 38, no. 2, pp. 894-942, 2010.

[7] 

M. Evaringam, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The Pascal visual 
object classes VOC challenge,” International Journal of Computer Vision, vol. 88, no. 2, pp. 
303-338, 210.

[8] 

28/30



Acknowledgments

29/30

Funding Agencies:

Ministry of Electronics and Information Technology, India


Robert-Bosch Centre for Cyberphysical Systems



Thank You

30/30


