ConFirmNet: Convolutional FirmNet and Application to Image Denoising and Inpainting

Praveen Kumar Pokala, Prakash Kumar Uttam, and Chandra Sekhar Seelamantula

Department of Electrical Engineering Indian Institute of Science Bangalore-12, India

May 6, 2020

Email: css@iisc.ac.in

- 1. Motivation and Applications
- 2. Sparse Coding and *Learned* Sparse Coding
- 3. Convolutional Sparse Coding and *Learned* Convolutional Sparse Coding
- 4. *Minimax-Concave* Penalty (MCP)
- 5. MCP-Regularized Convolutional Sparse Coding (MC²SC)
- 6. Learned MC²SC
- 7. Application to Image Denoising and Inpainting.

Motivation and Applications

- 1. Standard convolutional sparse coding algorithms are not fast [Sreter et al., ICASSP, 2018].
- 2. Convex-relaxation of standard CSC [Garcia and Wohlberg, TCI, 2018].
- 3. Convex-relaxation for sparse coding results in biased estimates [Selesnick, TSP, 2017].
- 4. Objective: To develop an efficient non-convex CSC formulation.
- 5. Train an efficient sparse-coding network that results in high-quality reconstruction.
- 6. Image denoising and inpainting applications.

Sparse Coding

1. The actual sparse coding problem (NP-hard):

 $\min \|\mathbf{X}\|_0 \quad \text{s.t.} \quad \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 \le \epsilon.$

2. Convex relaxation of the above problem:

$$\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{\mathrm{F}}^2 + \lambda \|\mathbf{X}\|_1.$$

Pros:

- 1. Convex cost with global convergence guarantees.
- 2. Fast algorithms.

Cons:

- 1. Biased amplitude estimates [Selesnick, TSP, 2017].
- 2. Inefficient for large number of patches.
- 3. Loss of spatial continuity.
- 4. Lack of translation-invariance.

Sparse Coding: I1 minimization

• LASSO minimization problem [Candès and Plan, Annals Stat., 2009]:

$$\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{\mathrm{F}}^{2} + \lambda \|\mathbf{X}\|_{1},$$

where λ is the regularization parameter.

Iterative Soft-Thresholding Algorithm (ISTA) update [Daubechies et al., CPAM, 2004]:

$$\mathbf{X}^{k+1} = \Gamma_{\lambda\eta} \left((I - \eta \mathbf{D}^{\mathrm{T}} \mathbf{D}) \mathbf{X}^{k} + \eta \mathbf{D}^{\mathrm{T}} \mathbf{Y} \right),$$

where $\Gamma_{\lambda\eta}$ is the element-wise soft-thresholding operator; η is the step-size.

• Faster ISTA update [Beck and Teboulle, SIAM, 2009]:

$$\mathbf{Y}^{k+1} = t_{k+1}\mathbf{X}^{k+1} + \frac{t_k-1}{t_{k+1}}(\mathbf{X}^{k+1} - \mathbf{X}^k),$$

where \mathbf{X}^{k+1} is the ISTA update and $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}.$

LISTA: Learned ISTA

• Learned ISTA [Gregor and LeCun, ICML, 2010]: Proximal operator and affine transformations made learnable: $\{\mathbf{U}, \mathbf{V}, \boldsymbol{\lambda}\}$

$$\mathbf{X}^{k+1} = \Gamma_{\boldsymbol{\lambda}} \left(\mathbf{V} \mathbf{X}^k + \mathbf{U} \mathbf{Y} \right).$$

Loss function:

$$\mathcal{L}(\mathbf{X}^{\star}, \mathbf{\hat{X}}; \mathbf{U}, \mathbf{V}, \mathbf{\lambda}) = \frac{1}{2} \|\mathbf{X}^{\star} - \mathbf{\hat{X}}\|_{\mathrm{F}}^{2}.$$

Three-layered LISTA architecture is shown below:

LISTA: Deep-unfolding architecture

6/30

Limitations of LISTA

- Poor support recovery, biased amplitude estimates, and lack of interpretability between sparsity and shrinkage [Pokala et al., ICASSP., 2020].
- Patch-based method: Loss of spatial continuity, inefficient for large number of patches, and lack of translation-invariance [Sreter and Giryes, ICASSP, 2018].

Minimax-Concave Penalty Sparse Regularization

Minimax-concave regularization for sparse recovery [Zhang, Annals Stat., 2010]:

$$\min_{\mathbf{X}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_{\mathrm{F}}^{2} + \lambda \|\mathbf{X}\|_{\mathrm{MC}},$$

where λ is the regularization parameter.

• Iterative Firm-Thresholding Algorithm (IFTA) update [Pokala et al., ICASSP, 2019]:

$$\mathbf{X}^{k+1} = \mathcal{F}_{\lambda\eta} \left((I - \eta \mathbf{D}^{\mathrm{T}} \mathbf{D}) \mathbf{X}^{k} + \eta \mathbf{D}^{\mathrm{T}} \mathbf{Y}; \gamma \right),$$

where $\mathcal{F}_{\lambda\eta}$ is the element-wise firm-thresholding operator, η is the step-size and γ is the parameter of minimax-concave penalty.

 IFTA: nearly unbiased estimates, slow convergence, and lack of global convergence guarantees.

Learned Sparse Coding: FirmNet

- Deep-unfolding of IFTA ·····> FirmNet
- FirmNet [Pokala et al., ICASSP, 2019] learnable parameters $\{U, V, \lambda, \gamma\}$:

$$\mathbf{X}^{k+1} = \mathcal{F}_{\lambda} \left(\mathbf{V} \mathbf{X}^k + \mathbf{U} \mathbf{Y}; \boldsymbol{\gamma} \right).$$

• Loss function (δ is a small positive number) :

$$L(\mathbf{X}^{\star}, \hat{\mathbf{X}}) = \begin{cases} \frac{1}{2} \|\mathbf{X}^{\star} - \hat{\mathbf{X}}\|_{\mathrm{F}}^{2}, & \text{for } \|\mathbf{X}^{\star} - \hat{\mathbf{X}}\|_{\mathrm{F}} \leq \delta, \\ \delta \left(\|\mathbf{X}^{\star} - \hat{\mathbf{X}}\|_{\mathrm{F}} - \delta/2 \right), & \text{Otherwise.} \end{cases}$$

- Overcomes limitations: Inaccurate support recovery and biased estimates for amplitudes.
- Limitation: Patch-based method

Solution: Use a convolutional structure.

Convolutional Sparse Coding

- Convolutional sparse coding (CSC) operates on the whole image.
- CSC overcomes the limitations of patch-based approaches.
- CSC employs a convolutional dictionary.

$$\min_{\mathbf{d}, \mathbf{Z} = \{\mathbf{Z}_i\}_{i=1}^m} \|\mathbf{X} - \sum_{i=1}^m d_i * \mathbf{Z}_i\|_{\mathrm{F}}^2 + \lambda \sum_{i=1}^m \|\mathbf{Z}_i\|_1$$

s.t. $\|\boldsymbol{d}_i\|_2^2 \leq 1 \quad i = 1 \text{ to } m.$

• Given \mathbf{X} , find kernels (\mathbf{d}_i) and sparse feature maps $(\mathbf{Z}_i), \forall i \in \{1, m\}$.

s.t.
$$\mathbf{X} = \sum_{i=1}^{m} \mathbf{I}_{\mathbf{I}} \mathbf{I}_{\mathbf{I}} \mathbf{I}_{\mathbf{I}} \mathbf{I}_{\mathbf{I}}$$

Convolutional Extension of ISTA

Convolutional ISTA update

Convolutional LISTA

• Convolutional LISTA [Sreter and Giryes, ICASSP, 2018]: Replaces convolutional kernels and parameters of the nonlinearity with the learnable parameters: $\{w_e, w_d, \lambda\}$.

Convolutional LISTA: kth layer

Contributions

- 1. Minimax-concave regularized CSC (MC²SC).
- 2. Convolutional IFTA (CIFTA) based on successive convex approximation (SCA).
- 3. Deep-unfolding of CIFTA ---- Convolutional FirmNet (ConFirmNet).
- 4. Auto-encoder based on Convolutional FirmNet.
- 5. Application to image denoising and inpainting.

Scalar Minimax-Concave Penalty

 Zhang [Annals Stat., 2010] introduced the scalar MCP, which is a non-convex relaxation to the l₀ - pseudonorm:

$$g_{\alpha}(x) = \begin{cases} |x| - \frac{1}{2}\alpha^{2}x^{2}, & |x| \leq \frac{1}{\alpha^{2}}, \\ \frac{1}{2\alpha^{2}}, & |x| \geq \frac{1}{\alpha^{2}}. \end{cases}$$

MCP Regularized CSC

• The minimax-concave (MC) regularized convolutional sparse coding (MC²SC):

$$\min_{\mathbf{d},\mathbf{Z}=\{\mathbf{Z}_{i}\}_{i=1}^{m}} \left\{ F(\mathbf{Z}) = \|\mathbf{X} - \mathbf{M} \odot \sum_{i=1}^{m} d_{i} * \mathbf{Z}_{i}\|_{F}^{2} + \lambda \sum_{i=1}^{m} \|\mathbf{Z}_{i}\|_{MC} \right\}, \quad \text{s.t.} \quad \|d_{i}\|_{2}^{2} \leq 1, \ i = 1:m,$$

where
$$\|\mathbf{Z}_i\|_{MC} = \sum_{w,h} \left(|\mathbf{Z}_i^{wh}| - \frac{|\mathbf{Z}_i^{wh}|^2}{2\lambda_i \gamma_i} \right) \mathbf{1}_{\{|\mathbf{Z}_i^{wh}| \le \lambda_i \gamma_i\}} + \left(\frac{\lambda_i \gamma_i}{2}\right) \mathbf{1}_{\{|\mathbf{Z}_i^{wh}| \ge \lambda_i \gamma_i\}},$$

1 denotes the indicator operator, $\mathbf{M} \in \{0, 1\}^{w \times h}$, \odot element-wise multiplication, $\{\mathbf{X}, \mathbf{Z}_i\} \in \mathbb{R}^{w \times h}$, and $\mathbf{Z}_i^{wh} = [\mathbf{Z}_i]_{wh}$.

Successive Convex Approximation

•
$$\mathcal{F}_{\lambda,\gamma}(\mathbf{U}) = \arg \min_{\mathbf{Z}} \underbrace{\frac{1}{2\eta} \|\mathbf{Z} - \mathbf{U}\|_{\mathrm{F}}^2 + \lambda \|\mathbf{Z}\|_{MC}}_{F(\mathbf{Z})}$$

where $F(\mathbf{Z})$ is convex for $\gamma > 1$, unique minima exists, and it is given by,

$$\mathcal{F}_{\lambda,\gamma}(\mathbf{U}) = \begin{cases} \mathbf{0}, & |\mathbf{U}| \leq \lambda \mathbf{1}, \\ \frac{\gamma}{\gamma - 1} \mathbf{1} \odot (|\mathbf{U}| - \lambda \mathbf{1}) \odot \operatorname{sgn}(\mathbf{U}), \lambda \mathbf{1} < |\mathbf{U}| \leq \gamma \lambda \mathbf{1}, \\ \mathbf{U}, & |\mathbf{U}| > \gamma \lambda \mathbf{1}, \end{cases}$$

where sgn is the element-wise signum operator, $|\cdot|$ is the element-wise absolute operator, and **1** is the matrix of all ones.

Convolutional IFTA

MC²SC problem: solved via convex subproblems constructed by SCA.

•
$$\mathbf{Z}^{t+1} = \arg\min_{\mathbf{Z}} \frac{1}{2\eta} \|\mathbf{Z} - \{\mathbf{Z}^{t} - \eta \nabla f(\mathbf{Z}^{t})\}\|_{\mathrm{F}}^{2} + \lambda \sum_{i=1}^{m} \|\mathbf{Z}_{i}\|_{MC},$$

where $f(\mathbf{Z}) = \frac{1}{2} \| \mathbf{X} - \mathbf{M} \odot \sum_{i=1}^{m} d_i * \mathbf{Z}_i \|_{\mathrm{F}}^2$ and $\mathbf{Z} = [\mathbf{Z}_1, \mathbf{Z}_2, \dots, \mathbf{Z}_m]^{\mathrm{T}}$.

- SCA results in $\mathbf{Z}^{t+1} = \mathcal{F}_{\lambda,\gamma}(\mathbf{U})$, where $\mathbf{U} = \mathbf{Z}^t \eta \nabla f(\mathbf{Z}^t)$.
- SCA possesses local steepest-descent property.
- Convergence guarantees: CIFTA reaches a stationary point.

Convolutional FirmNet: Deep-Unfolding of CIFTA

- Convolutional IFTA update: $\mathbf{Z}^{k+1} = \mathcal{F}_{\boldsymbol{\lambda}, \boldsymbol{\gamma}} \left(\mathbf{Z}^k \boldsymbol{w}_e * \boldsymbol{w}_d * \mathbf{Z}^k + \boldsymbol{w}_e * \mathbf{Y} \right).$
- Convolutional FirmNet: Recurrent architecture for CSC with one layer.
- Z^1 : sparse feature maps at the output of the first layer.

ConFirmNet: Convolutional FirmNet with a Single Layer

Auto-Encoder Based on Convolutional FirmNet

 Auto-encoder structure based on ConFirmNet: Learn approximate sparse coding and dictionary.

Experimental Validation

- Training a sparse auto-encoder based on ConFirmNet:
 - 1. Filter weights are randomly initialized from a uniform distribution.
 - 2. Kernels of size: 3 x 3
 - 3. Dataset: PASCAL VOC [Evaringam et al., IJCV, 2010].
 - 4. Training data: Testing data = 80 : 20.
 - 5. Number of layers: 20
 - 6. $\{\lambda, \gamma\}$ are initialized with vector of all entries equal to 0.5 and 5.0, respectively.
 - 7. Number of kernels: 256.
 - 8. Additive white Gaussian noise is considered for image denoising.

Experimental Validation

Training cost:

$$L(\mathbf{Y}^{\star}, \hat{\mathbf{Y}}) = \begin{cases} \frac{1}{2} \|\mathbf{Y}^{\star} - \hat{\mathbf{Y}}\|_{\mathrm{F}}^{2}, & \text{for } \|\mathbf{Y}^{\star} - \hat{\mathbf{Y}}\|_{\mathrm{F}} \leq \delta, \\ \delta \left(\|\mathbf{Y}^{\star} - \hat{\mathbf{Y}}\|_{\mathrm{F}} - \delta/2 \right), & \text{Otherwise} \end{cases}$$

where $\delta > 0$. We set $\delta = 1$ in our experiments.

- $M = 11^T$ for the image denoising, where 1 denotes a 256-dimensional vector of all ones.
- $\mathbf{M} \in \{0,1\}^{256 \times 256}$ is the binary mask drawn independently from a Bernoulli distribution with a probability 0.5 for image inpainting.

Image Denoising

• Model trained on noisy images (σ of 30).

Image	BM3D	ConLISTA	ConFirmNet
Peppers	29.30 ± 0.06	29.64 ± 0.08	$29.78{\pm}0.07$
Goldhill	29.09 ± 0.03	29.06 ± 0.02	$29.12{\pm}0.02$
Man	$28.82{\pm}0.03$	$28.96{\pm}0.03$	$29.01{\pm}0.02$
Lena	$31.23{\pm}0.03$	$31.14{\pm}0.04$	$31.28{\pm}0.04$
Cameraman	28.60 ± 0.06	28.85 ± 0.06	$29.12{\pm}0.06$
Barbara	$29.76{\pm}0.02$	$27.84{\pm}0.01$	$28.24{\pm}0.02$
House	$32.15{\pm}0.08$	31.98 ± 0.06	32.08 ± 0.08
Couple	$28.84{\pm}0.03$	$28.91{\pm}0.02$	$29.01{\pm}0.03$
Boats	29.05 ± 0.03	29.02 ± 0.03	$29.12{\pm}0.02$

Testing scenario: Average and standard deviation of PSNR [dB] are evaluated based on 20 noise realizations.

Image Denoising: Robustness of ConFirmNet

- The model is trained with a standard deviation of 20.
- Mean and standard deviation of PSNR [dB] computed based on 20 noise realizations.

Image	Convolutional LISTA			ConFirmNet		
	$\sigma = 5$	$\sigma = 15$	$\sigma = 30$	$\sigma = 5$	$\sigma = 15$	$\sigma = 30$
Barbara	31.23 ± 0.011	$30.97 {\pm} 0.020$	22.73 ± 0.024	$31.85{\pm}0.011$	$31.46{\pm}0.020$	$22.96{\pm}0.028$
Goldhill	$30.80 {\pm} 0.008$	$30.91 {\pm} 0.016$	22.74±0.026	$30.83{\pm}0.007$	$30.98{\pm}0.016$	$23.03 {\pm} 0.027$
Man	$31.01 {\pm} 0.008$	$31.14 {\pm} 0.026$	22.76 ± 0.028	$31.07{\pm}0.009$	$31.15{\pm}0.024$	$23.02{\pm}0.028$
Peppers	$32.82{\pm}0.017$	$32.43 {\pm} 0.053$	23.10 ± 0.065	$33.03{\pm}0.023$	$32.55{\pm}0.054$	$23.22{\pm}0.061$
Lena	$33.79 {\pm} 0.008$	$33.59 {\pm} 0.028$	22.97 ± 0.030	$34.06{\pm}0.008$	$33.74{\pm}0.029$	$23.29{\pm}0.030$
Cameraman	31.13 ± 0.014	$31.18 {\pm} 0.058$	23.10 ± 0.044	$31.28{\pm}0.015$	$31.28{\pm}0.056$	$23.35{\pm}0.048$
House	$34.57{\pm}0.019$	$34.16 {\pm} 0.048$	22.98 ± 0.049	$34.92{\pm}0.019$	$34.39{\pm}0.048$	$23.30 {\pm} 0.053$
Couple	31.47 ± 0.100	$31.35 {\pm} 0.019$	22.80 ± 0.026	$31.63{\pm}0.009$	$31.44{\pm}0.020$	$23.00{\pm}0.024$
Boats	31.29 ± 0.005	$31.23 {\pm} 0.024$	22.81 ± 0.027	$31.48{\pm}0.007$	$31.37{\pm}0.021$	$23.06{\pm}0.030$

Performance comparison: Training and testing noise mismatch

Visual Inspection

Image denoising performance comparison for noise standard deviation of 30.

Original Image

Noisy Image

BM3D, 29.24 dB

29.47 dB

24/30

Convolutional LISTA, ConFirmNet, 29.73 dB

Image Inpainting

- Performance comparison on test images used in [Heide et al., CVPR, 2015] and [Sreter and Giryes, ICASSP, 2018].
- Binary mask probability = 0.5.

Performance comparison in terms of PSNR [dB]

Image Index [*]	FFCSC	Con LISTA	ConFirmNet
1	24.56 ± 0.021	$25.83{\pm}0.031$	$25.86{\pm}0.029$
2	26.08 ± 0.027	$28.86 {\pm} 0.046$	28.89 ± 0.048
3	25.85 ± 0.014	$27.06 {\pm} 0.046$	$27.09{\pm}0.045$
4	24.37 ± 0.016	$25.43{\pm}0.021$	$25.50{\pm}0.021$
5	28.07 ± 0.020	$29.71{\pm}0.047$	$29.68 {\pm} 0.049$
6	24.90 ± 0.014	$29.54{\pm}0.048$	$29.58{\pm}0.046$
7	24.43 ± 0.017	$25.87{\pm}0.031$	$26.02{\pm}0.027$
8	26.88 ± 0.034	$27.24{\pm}0.051$	$27.28{\pm}0.057$
9	24.43 ± 0.016	$25.73{\pm}0.032$	$25.79{\pm}0.027$
10	26.93 ± 0.034	$28.51{\pm}0.038$	$28.63{\pm}0.039$

Test image index* is the same as that mentioned in [Sreter and Giryes, ICASSP, 2018].

Visual Inspection

Image inpainting; Mask probability = 0.5.

Corrupted Image

Convolutional LISTA 27.65 dB

ConFirmNet 27.87 dB

Conclusions

- We proposed minimax-concave regularized convolutional sparse coding problem (MC²SC) and developed the convolutional iterative firm-thresholding algorithm (CIFTA) to solve it.
- 2. Deep-unfolding of CIFTA ---- Convolutional FirmNet (ConFirmNet).
- 3. ConFirmNet is superior to the other techniques with application to image denoising and inpainting. Further, it is robust to mismatch between the training and testing noise conditions.
- 4. Computational complexity comparable to that of convolutional LISTA.

Key References

- [1] H. Sreter and R. Giryes, "Learned convolutional sparse coding," *in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 2191-2195, 2018.
- [2] P. K. Pokala, A. G. Mahurkar, and C. S. Seelamantula, "FirmNet: A sparsity amplified deep network for solving linear inverse problems," *in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 2982-2986, 2019.
- [3] K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," *in Proceeding of the 27th International Conference on Machine Learning*, pp. 399-406, 2010.
- [4] F. Heide, W. Heidrich, and G. Wetzstein, "Fast and flexible convolutional sparse coding," *in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition*, pp. 5135-5143, 2015.
- [5] V. Papyan, Y. Romano, J. Sulam and M. Elad, "Convolutional dictionary learning via local processing," *in Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition*, pp. 5296-5304, 2017.
- [6] B. Wohlberg, "Efficient algorithms for convolutional sparse representations," *IEEE Transaction* on Image Processing, vol. 25, no. 1, pp. 301-315, 2015.
- [7] C-H. Zhang, "Nearly unbiased variable selection under minimax-concave penalty," *The Annals of Statistics*, vol. 38, no. 2, pp. 894-942, 2010.
- [8] M. Evaringam, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, "The Pascal visual object classes VOC challenge," *International Journal of Computer Vision*, vol. 88, no. 2, pp. 303-338, 210.

Funding Agencies:

- Ministry of Electronics and Information Technology, India
- Robert-Bosch Centre for Cyberphysical Systems

Thank You