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Motivation

• There are blind source separation (BSS) methods for non-Gaussian
data, time series, matrix- and tensor-valued data, functional data,
etc.

• Here we focus on signals on graphs. BSS on graphs has got only a
little attention so far. We propose

• modifications to the one graph BSS method which has been
introduced

• new method which uses non-Gaussianity and dependencies in the
data which are given by graphs.
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Blind source separation model

We consider real-valued and linear BSS model for the graph data

X = ΩZ ,

where

• X is the P × N data matrix,

• Ω is a full rank unknown P × P mixing matrix,

• Z is a P × N matrix of latent independent components, which have
zero means and unit variances.



• The aim is to estimate Γ = Ω−1 using only X .

1. Whitening:
X̃ = Ŝ0(X )−1/2(X − X̄ )

where Ŝ0 is the sample covariance matrix.

2. Choose how to measure the independence.

3. Find such orthogonal matrix Û that ÛX̃ has maximally independent
components with respect to the measure.

4. The unmixing matrix estimate is Γ̂ = ÛS
−1/2
0 .



• Sources can be separated with different strategies:

• Use marginal distributions of the components. Make them as
non-Gaussian as possible.

• Use correlations of the data points. Time series, matrix, tensor or
graph data.

• Here we combine methods which use non-Gaussianity and graphs.



2. Graph signals
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Undirected graph with N = 12 nodes can be presented by N × N
adjacency matrix A.
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A =



0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 1 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0





Graph moving average (GMA) model

• GMA signal model of order m, GMA(m), is given by

z = y +
m∑
l=1

θlA
ly

where y , [y1, . . . , yn]T with y1, . . . , yn ∼ N(0, σ2
y ) and mutually

independent, and θ1, . . . , θm are the MA coefficients.

• In GMA(1) model the ith node is given by

zi = yi + θ
∑
j∈Ni

aijyj ,

where Ni denotes the incoming neighbors of node i . Thus, if θ 6= 0,
zi and zj are correlated if ith and jth nodes are neighbors, or if they
have common incoming neighbors.



3. BSS of graph signals



Graph autocovariance matrix

• Let us define the sample graph autocovariance matrix at lag k with
respect to adjacency matrix W as

Sk(X,W) =
XWkX>

N

• It satisfies
Sk(UX,W) = USk(X,W)U>



GraDe (graph decorrelation), Blöchl et al. (2010)

1. Whiten the data X→ X̃.

2. Choose symmetric W and K ≥ 1.

3. Find orthogonal Û that maximizes

K∑
k=1

‖diag(UŜk(X̃,W)UT )‖2.

4. The GraDe unmixing matrix estimate is Γ̂K (W ) = ÛS
−1/2
0 .



We modify GraDe in two ways:

1. Allow multiple adjacency matrices W1, . . . ,WM .

2. Standardize the graph autocovariance matrices so that the scales of
W1, . . . ,WM do not have any effect:

S̃k(X,Wm) =
XWk

mX>

‖Wk
mX>‖



4. Graph JADE



Graph JADE

• Objective function of Graph JADE to be maximized is

fGraphJADE = b
M∑

m=1

K∑
k=1

‖diag(US̃(X̃,Wk
m)U>)‖2

+ (1− b)
P∑

k=1

P∑
l=1

‖diag(UĈk,lU>)‖2

where b ∈ [0, 1] is a weight parameter and

Ĉk,l =
N∑
i=1

[X̃]k,i [X̃]l,i [X̃]·,i [X̃]>·,i − Ek,l
P×P − El,k

P×P − tr{Ek,l
P×P}.

• JADE (Joint Approximate Diagonalization of Eidenmatrices)
(Cardoso and Soloumiac, 1993) is based on joint diagonalization of
fourth-order cumulant matrices. Therefore, implementation of Graph
JADE is simple.



Identifiability conditions for Graph JADE

• Let W denote the set of adjacency matrices in Graph JADE. Then
the identifiability conditions can be stated as follows.

• For any pair of ICs zi and zj
(i) there is a matrix W ∈ W such that

E{diag(S̃(Z,W))i} 6= E{diag(S̃(Z,W))j}

or

(ii) E{N−1 ∑N
n=1 z

4
in} 6= 3 or E{N−1 ∑N

n=1 z
4
jn} 6= 3

• Notice that (i) alone gives the identifiability conditions for GraDe
and (ii) alone for JADE.



5. Simulations



Performance measure in simulation studies

• Minimum distance (MD) index (Ilmonen et al., 2010b)

D(Γ̂) =
1√
p − 1

inf
C∈C
‖CΓ̂Ω− Ip‖

where

C = {C : each row and column of C has exactly one non-zero element}.

• 0 ≤ D(Γ̂) ≤ 1, smaller value is better.

• N(P − 1)D(Γ̂)2 will be used as the final measure.



Simulations

• Four estimators are compared in four models:

• GraDe (modified), K = 2

• JADE

• Symmetric FastICA (Hyvärinen, 1999), tanh nonlinearity function

• Graph JADE, K = 2, b = 0.8

• The figures will show averages of 1000 runs.



Model 1

• Four independent components are GMA(1) signals with joint A from
Erdös–Rényi model G (N, 0.05), and

IC1 θ = 0.02, y follows t5-distribution

IC2 θ = 0.04, y follows t10-distribution

IC3 θ = 0.06, y follows t15-distribution

IC4 θ = 0.08, y follows Gaussian distribution

• In this model, sources can be separated using non-Gaussianity or
graph decorrelation.
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Model 2

• Four independent components are GMA(1) signals with joint A from
Erdös–Rényi model G (N, 0.05),

IC1 θ = 0.05, y follows t5-distribution

IC2 θ = 0.06, y follows uniform distribution

IC3 θ = 0.07, y follows exponential distribution with λ = 1

IC4 θ = 0.08, y follows Gaussian distribution

• This model is challenging for GraDe.
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Model 3

• Four independent components are GMA(1) signals with different
adjacency matrices. For all components θ = 0.05 and distribution of
y is t15.

• This model is challenging for FastICA and JADE.
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Model 4

• Four independent components are GMA(1) signals with joint A from
Erdös–Rényi model G (N, 0.05), and

IC1 θ = 0.05, y follows t5-distribution

IC2 θ = 0.05, y follows Gaussian distribution

IC3 θ = 0.1, y follows uniform distribution

IC4 θ = 0.1, y follows Gaussian distribution

θ = 0.05, 0.05, 0.1, 0.1 and distributions of ys are t5, Gaussian,
uniform, and Gaussian, respectively.

• In this model, there are two components (IC2 and IC4) which can
not be separated using FastICA or JADE, and two pairs of
components (IC1 and IC2, IC3 and IC4) which can not be separated
using GraDe.
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Conclusions

• We have proposed a BSS method called Graph JADE for graph
signals, which use both possible non-Gaussianity and graph
dependencies within the latent components.

• The proposed method outperforms JADE, FastICA, and GraDe
when the sources are non-Gaussian graph signals, and meets the
performance of the best method with minor losses when the sources
exhibit only non-Gaussianity or graph dependence.
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