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Introduction



▪ Previous voice conversion uses frame-by-frame mapping 

with GMM, DNN, and RNN. [1, 2]

▪ Recently, voice conversion using seq2seq models has 

been proposed. [3]

▪ One drawback of current VC is lack of linguistic 

information. 

▪ Linguistic information is additionally provided by 

auxillary classifier or complex attention modules. [4]

▪ In this paper, we propose ‘Voice Conversion using 

Multitask Learning with Text-to-speech’
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Introduction

Source Domain Target Domain Source Domain Target Domain

One-to-one VC Many-to-many VC

Previous works mainly on One-to-one VC, especially for gender conversion

In this work, many-to-many VC on emotion conversion is proposed



▪ Multitask learning with TTS could improve the performance of VC.

▪ Many-to-many emotional voice conversion was firstly conducted by 

a seq2seq model.

▪ A style reference speech could determine target domain of voice 

conversion

6

Contributions
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Emotional Voice Conversion using Multitask 
Learning with Text-to-speech

For VC

For TTS

Main idea: 
• without TTS path, VC can lose linguistic information.
• with TTS path, VC can capture linguistic information.

Training:
• For every batch, sample (𝑥𝑠, 𝑥𝑐 , 𝑥𝑜) or 𝑥𝑠, 𝑦𝑡 , 𝑥𝑜 with probability 0.5.

(where 𝑥𝑜has same style with 𝑥𝑠, and same contents with 𝑥𝑐 or 𝑦𝑡)



▪ Dataset: KETTS male

• 7 emotions

• 3,000 utterances per emotion

• Across 3,000 utterances, same text set was used.

▪ Feature extraction

• Downsampled to 16kHz

• Silence removed using VAD1)

• STFT with 50ms window and 12.5 shift.

• 80 Log-mel spectrogram is used

• Scaled to [0, 1]
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Experimental details

1) https://github.com/wiseman/py-webrtcvad

https://github.com/wiseman/py-webrtcvad
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Model Comparison

VC

VCTTS-V
Infer with VC
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Experimental Results

Linguistic Consistency

방 안이 추우니 히터 좀 틀어주세요

𝑥𝑠

VCTTS-VVC

그 이야기는 할 필요가 없다.

어제보다 오늘, 더 너를 사랑해

𝒙𝒄𝒚𝒕

(happy)

bang an-i chuuni hiteo jom teul-eojuseyo

eojeboda oneul, deo neoleul salanghae

geu iyagineun hal pil-yoga eobda.



▪ Google ASR → Mecab POS Tagger→ WER Measured
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Experimental Results

▪ Subjective Evaluation
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Experimental Results

Voice conversion resultℎ𝑠 Similarity matrix

“나는 수업시간에 책을 읽는 척하면서 고개를 숙이고 잤다.”
naneun sueobsigan-e chaeg-eul ilgneun cheoghamyeonseo gogaeleul sug-igo jassda



▪ We presented the emotional VC using multi-task learning with TTS. 

▪ Although there have been abundant researches on VC, the performance of 

VC lacks in terms of preserving linguistic information, emotional information, 

and many-to-many VC. 

▪ Unlike previous methods, the linguistic contents of VC were preserved by 

multitask learning with TTS. 

▪ The results showed that using mul-titask learning significantly reduces the 

WER. 
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Conclusion



▪ This research can be extended into many other directions.

▪ First, TTS can also be improved by the VC as some characterscan be 

pronounced differently. 

▪ Second, the content encoder can make synergy with speech 

recognition as the content encoder was trained to extract linguistic 

information. 

▪ Third, more explicit loss can be added to minimize the difference 

between the linguistic embedding of VC and TTS.
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Future Work
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