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= Previous voice conversion uses frame-by-frame mapping
with GMM, DNN, and RNN. [1, 2]

= Recently, voice conversion using seg2seq models has
been proposed. [3]

= One drawback of current VC is lack of linguistic
information.

= Linguistic information is additionally provided by
auxillary classifier or complex attention modules. [4]

= |n this paper, we propose ‘Voice Conversion using
Multitask Learning with Text-to-speech’
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Source Domain Target Domain Source Domain Target Domain

One-to-one VC Many-to-many VC

Previous works mainly on One-to-one VC, especially for gender conversion

In this work, many-to-many VC on emotion conversion is proposed
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= Multitask learning with TTS could improve the performance of VC.
= Many-to-many emotional voice conversion was firstly conducted by
a seg2seq model.

= A style reference speech could determine target domain of voice
conversion



Emotional Voice Conversion using Multitask
Learning with Text-to-speech -

KAIST INSTITUTE

Style
Xs Encoder

ForVC | econtente | h, 7 TN T T T T TTTTTONT T
X, Contents

Encoder

T~——»{ Attention » Decoder

For TTS '
he T .
T enced Y e
| lteration |

Ve Encoder

Vocoder ——» X 0

>
Processor

1
1
'm Post [
1
1

Main idea:
e without TTS path, VC can lose linguistic information.
e with TTS path, VC can capture linguistic information.

Training:
* For every batch, sample (x,, x., x,) or (xg, V¢, x,) with probability 0.5.
(where x,has same style with x,, and same contents with x, or y;)
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» Dataset: KETTS male

« 7 emotions

3,000 utterances per emotion

« Across 3,000 utterances, same text set was used.
= Feature extraction

« Downsampled to 16kHz

Silence removed using VADY

STFT with 50ms window and 12.5 shift.
80 Log-mel spectrogram is used
Scaled to [0, 1]

1) https://github.com/wiseman/py-webrtcvad
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Linguistic Consistency
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= Google ASR > Mecab POS Tagger-> WER Measured

Table 1. Word error rate comparison

vC  VCTTS-V  VCTTS-T TTS  Train
WER 32.09 24.09 20.31 19.84 15.32

= Subjective Evaluation

Table 2. MOS and ABX preference score on clarity with 95%
confidence intervals computed from the t-distribution

VC VCTTS-V

MOS 408 +£0.17 454 +0.08
ABX 0114006 055£0.12
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= We presented the emotional VC using multi-task learning with TTS.

= Although there have been abundant researches on VC, the performance of
VC lacks in terms of preserving linguistic information, emotional information,
and many-to-many VC.

= Unlike previous methods, the linguistic contents of VC were preserved by
multitask learning with TTS.

= The results showed that using mul-titask learning significantly reduces the
WER.
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= This research can be extended into many other directions.

= First, TTS can also be improved by the VC as some characterscan be
pronounced differently.

= Second, the content encoder can make synergy with speech
recognition as the content encoder was trained to extract linguistic
information.

= Third, more explicit loss can be added to minimize the difference
between the linguistic embedding of VC and TTS.
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