SELF-SUPERVISED DENOISING AUTOENCODER WITH LINEAR REGRESSION DECODER FOR SPEECH ENHANCEMENT

Ryandhimas E. Zezario, Tassadaq Hussain, Xugang Lu, Hsin-Min Wang, Yu Tsao

> Presented by: **Ryandhimas Zezario** ryandhimas@citi.sinica.edu.tw

Outlines

- Introduction
- The Proposed Denoising Autoencoder with Linear Regression Decoder (DAELD) System
- Experiments
- Conclusion

• What is speech enhancement?

Speech enhancement aims to retrieve clean speech signals from noisy ones and serves as an important pre-processor in many speech related tasks, such as:

- >Automatic speech recognition
- >Assistive listening
- >Speech coding
- Speaker recognition

Trends of speech enhancement

>Started by statistical based speech enhancement

- >Followed by machine learning based speech enhancement
- Deep-learning-based methods have caught great attention in recent years, in particular the supervised based approach

Challenge of supervised learning based speech enhancement

>A pair set of noisy and clean is a must

Required a sufficient amount of training data

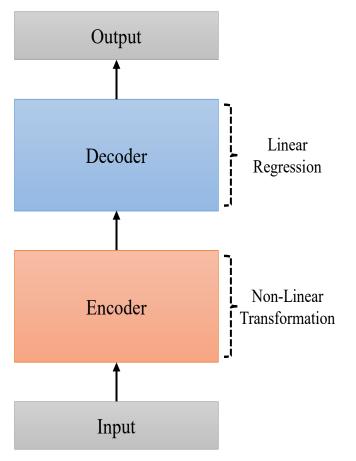
No guarantee when operating under unseen or noise types or speakers

Unsupervised learning

Unrequired labelled training data

It can extract essential representations from the salient structure of the input data

>Example is Autoencoder


Autoencoder

It consists of encoder and decoder

> Encoder transforms the input physical data into latent features

> Decoder will reconstruct to the original data

Architecture

ICASSP 2020

• Two types of DAELD

► DAELD (SAE) and DAELD (BP)

DAELD calculates the weights in the encoder in an unsupervised self-learning training criterion

> It consists of offline and online stages

> DAELD_(SAE)

$$\boldsymbol{\beta}_{SAE} = \left(\delta \boldsymbol{I} + \boldsymbol{H}_{SAE}^{T} \boldsymbol{H}_{SAE}\right)^{-1} \boldsymbol{H}_{SAE}^{T} \boldsymbol{Y}$$
> DAELD_(BP)

$$\boldsymbol{\beta}_{BP} = \left(\delta \boldsymbol{I} + \boldsymbol{H}_{BP}^{T} \boldsymbol{H}_{BP}\right)^{-1} \boldsymbol{H}_{BP}^{T} \boldsymbol{Y}$$

Online

> We obtain hidden layer output \overline{H} by the encoder whose parameters are trained in the unsupervised manner

> Based on the estimated linear transformation, β (either β_{SAE} or β_{BP}) the enhanced speech spectral can be estimated as:

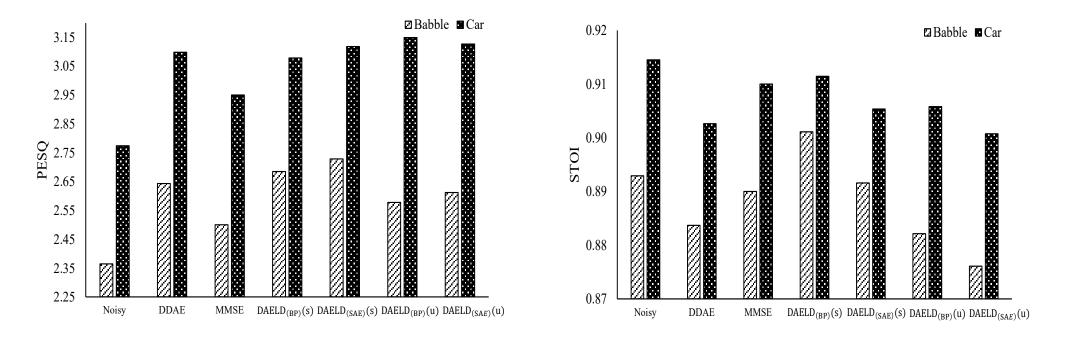
 $\widehat{X} = \overline{H}\beta$

Experimental setup

- Aurora-4 dataset
 - ✓ 2676 training utterances
 - ✓ Six types of noises (babble, car, restaurant, street, airport, and train)
 - ✓ SNR levels varying from 10 to 20 dB
 - ✓Noisy utterances (contaminated with babble and car noises) at SNR levels varying from 5 to 15 dB, were used as the test data.

Experimental setup

- >TIMIT
 - ✓4620 training
 - ✓ 90 types of noises at eight SNR levels (from -10 dB to 25 dB with steps of 5 dB) into the clean training
 - ✓ Four unseen (two stationary and two non-stationary) noise types under five SNR levels (-12 dB, -6 dB, 0dB, 6dB and 12 dB) to test the enhancement performance


Experimental setup

>80-dimensional Mel frequency power spectrum (MFP)

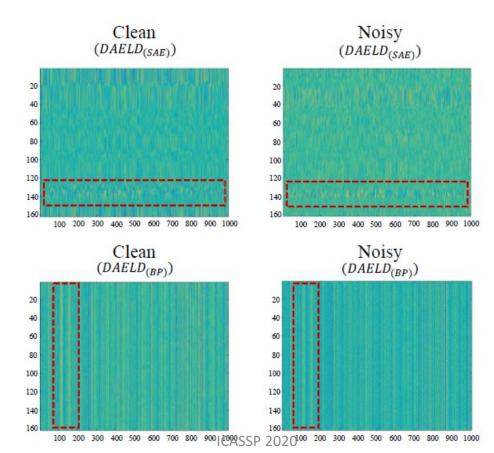
DAELD models were formed by a three-layered architecture with [1000 1000 16000] hidden nodes

Objective evaluation results

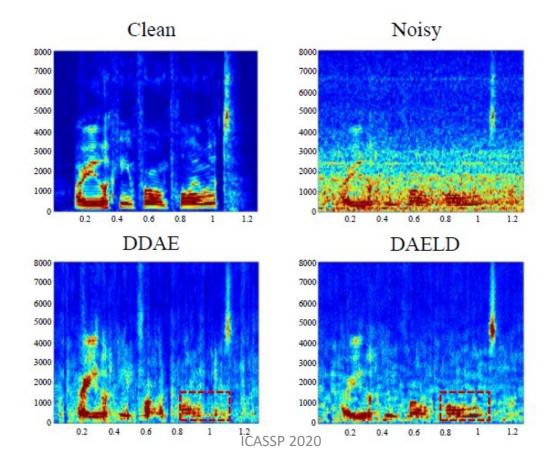
>Aurora 4

Objective evaluation results

>TIMIT


PESQ

	12	6	0	-6	-12	Ave			
Stationary Noises (Car and Engine)									
Noisy	2.45	1.95	1.60	1.39	1.30	1.74			
DDAE	2.53	2.18	1.79	1.47	1.32	1.86			
MMSE	2.78	2.24	1.81	1.53	1.36	1.94			
DAELD(BP)(S)	2.63	2.27	1. 89	1.53	1.35	1.93			
DAELD _(SAE) (s)	2.64	2.27	1.87	1.52	1.37	1.94			
DAELD(BP)(u)	2.78	2.27	1.86	1.57	1.40	1.98			
DAELD _(SAE) (u)	2.80	2.31	1.89	1.58	1.40	2.00			
Non-stationary Noises (Babble and Restaurant)									
Noisy	2.50	2.03	1.71	1.48	1.37	1.82			
DDAE	2.61	2.27	1.89	1.58	1.40	1.95			
MMSE	2.61	2.10	1.71	1.46	1.26	1.83			
DAELD(BP)(S)	2.70	2.35	1.98	1.65	1.46	2.03			
DAELD _(SAE) (s)	2.75	2.40	2.01	1.68	1.48	2.06			
DAELD(BP)(u)	2.70	2.21	1.85	1.59	1.42	1.95			
DAELD _(SAE) (u)	2.73	2.24	1.87	1.59	1.42	1.97			


STOI

	12	6	0	-6	-12	Ave			
Stationary Noise (Car and Engine)									
Noisy	0.91	0.82	0.68	0.54	0.43	0.67			
DDAE	0.81	0.75	0.65	0.51	0.37	0.62			
MMSE	0.91	0.82	0.68	0.53	0.40	0.67			
DAELD(BP)(S)	0.82	0.76	0.67	0.54	0.40	0.64			
$DAELD_{(SAE)}(s)$	0.82	0.76	0.67	0.55	0.42	0.65			
DAELD(BP)(u)	0.89	0.81	0.68	0.54	0.41	0.67			
$DAELD_{(SAE)}(u)$	0.88	0.81	0.69	0.54	0.41	0.67			
Non-stationary Noise (Babble and Restaurant)									
Noisy	0.93	0.85	0.74	0.62	0.52	0.73			
DDAE	0.82	0.78	0.71	0.61	0.50	0.68			
MMSE	0.92	0.84	0.73	0.61	0.50	0.72			
DAELD(BP)(S)	0.83	0.79	0.73	0.63	0.52	0.70			
DAELD _(SAE) (s)	0.82	0.79	0.72	0.63	0.53	0.70			
DAELD(BP)(u)	0.90	0.83	0.73	0.61	0.50	0.72			
DAELD(SAE)(u)	0.89	0.83	0.73	0.61	0.50	0.71			

• Hidden layer analysis

Spectrogram analysis

Conclusion

- The main contribution of this study is two-fold. First, we investigated to use a linear regression function to form the decoder of the DDAE model (termed DAELD) and tested the DAELD model on two speech enhancement tasks (Aurora-4 and TIMIT).
- Second, we have investigated the performance of the DAELD system trained in a self-supervised learning fashion
- We will further test DAELD's capability in other speech-processing tasks, such as dereverberation, or multimodal (audio-visual) speech enhancement tasks.

Thank you