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Model

Observations follow a general linear model (GLM) as

y = Hθ + n

where
y ∈ CN

H ∈ CN×t [known]
θ ∈ Ct [unknown]
n ∈ CN ∼ CN (0,R) with unknown covariance

Another K training data denoted by {nk}Kk=1 is available for the
estimation of covariance.
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Problem Definition

Now problem is to decide between

H0 =
{

y = n ∼ CN (0,R)
yk = nk ∼ (1− ε)CN (0,R) + εCN (Hβ,R)

and

H1 =
{

y = Hθ + n ∼ CN (Hθ,R)
yk = nk ∼ (1− ε)CN (0,R) + εCN (Hβ,R)
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Classical Detectors

GLRT framework for the case of ε = 0 (signal free) is

TGLRT = maxθ,Rf1(y|R)
maxRf0(y|R) ,

where the likelihood function in both hypotheses are maximized over all
unknown parameters. This leads to

TGLRT = y†S−1H(H†S−1H)−1H†S−1y
1 + y†S−1y

,

where S = 1
K
∑K

k=1 yky†k is the sample covariance estimated using training
data.
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Classical Detectors

Using an ad-hoc approach, first we assume the covariance is known and
maximize the likelihood function over θ. At the end, the covariance will be
replaced with the sample covariance. This leads to adaptive matched filter
(AMF) given by

TAMF = y†S−1H(H†S−1H)−1H†S−1y.

Challenge:
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From KL divergece to α−divergence

Classical detectors are based on the maximum likelihood solution which in
large samples regime (K →∞) is equivalent to

λ̂ML = arg max
λ

1
K

K∑
i=1

log (f (yi , λ)) = arg min
λ

KL (f (y,λ∗), f (y,λ)) ,

As an alternative we propose to use the α−divergence defined as

Dα (g(y, λ) ‖ f (y, ω)) = 1
α(α− 1)

[∫
g(y, λ)αf (y, ω)1−αdy− 1

]
,

to develop the test. When α→ 1, Dα(.)→ KL(.).
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Proposed Robust AMF

We adopt the AMF approach. But for estimation of the covariance matrix
in second step, we use following expression

R̂ = arg min
R

Dα (f (y,R), ge(y; y1, · · · , yK )) ,

where ge(y; y1 · · · yK ) = 1
K
∑K

k=1 δ(y− yk) is the empirical denisity. The
solution gives:

R̂ = 1∑K
k=1 wk

K∑
k=1

wkyky†k ,

where wk = exp{−(1− α)y†kR−1yk}. This leads to

TRAMF = y†R̂−1H(H†R̂−1H)−1H†R̂−1y.
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Results

In simulation, R is an exponentially correlated covariance matrix with
one-lag correlation coefficient 0.9, i.e., the (i , j)−th element of R is set to
0.9|i−j|. SNR=25dB, N = 10, K = 40, ε = 0.15 and t = 2. Scatter plots
of H0 (blue) and H1 (red) are shown below.
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Results

Receiver operating characteristic plot (left) and accuracy of the robust
estimator (right) for different ε values:
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