ADRN:Attention-Based Deep Residual Network for Hyperspectral Image Denoising

Yongsen Zhao, Deming Zhai, Junjun Jiang, Xianming Liu

Harbin Institute of Technology, Harbin, China, 150001

ICASSP 2020

- abundant spatial and spectral information
- Washington DC Mall image, 191 bands

• The goal of HSI denoising is to recover a clean image ${\bf x}$ from a noisy observation ${\bf y}$,

$$\mathbf{y} = \mathbf{x} + \mathbf{v}$$

- where \mathbf{v} is additive white Gaussian noise in general.
- To address this ill-posed inverse problem, some *prior knowledge* about x needs to be adopted.

- Non-local
 - BM4D
- Low-rank
 - LRTA, LRMR, LLRT
- Non-local and Low-rank
 - NG-Meet

Time-consuming

Prior is hand-craft and thus lack of representation ability

- Deep-learning based method
 - HSID-CNN, SSGN

How to better capture both the spatial and spectral information?

How to design more discriminate network structure and improve the representation ability?

Overall architecture

- $Y_{spatial}$ denotes an input noisy band
- $Y_{spectral}$ denotes its K adjacent bands
- use auxiliary input to capture the low-rank property

Overall architecture

- extract the multi-scale spatial and spectral information
- concentrate on the most relevant feature

Overall architecture

- fuse the multi-level feature
- construct the residual noise

Multi-scale Feature Extraction Module

Overall architecture

$$R = F(\Theta, Y_{spatial}, Y_{spectral})$$
 $\hat{X} = Y_{spatial} - R$

Yongsen Zhao April,15,2020 18S103199@stu.hit.edu.cn

Feature extraction block

Residual block

- increases the flow of information
- contribute to noise prediction and back propagation

Channel attention block

$$F_i = F_{i-1} + W_{CA} * X_i$$

$$X_i = W_2 * \delta(W_1 * F_{i-1})$$

 $W_{CA} = Sigmoid(W_4 * \delta(W_3 * GP(X_i)))$

• adaptively modulate feature representation

• The loss function of our training process consists of two parts:

$$L_{total} = \lambda L_{rec} + L_{reg}$$

• L_{rec} aims to ensure the restored result approximate to the ground truth:

$$L_{rec} = rac{1}{NHW}\sum_{i=1}^{N}||\hat{X}^i - X^i||_2^2$$

• while L_{reg} is used to enforce the residual noise satisfy a zeromean distribution:

$$L_{reg} = (rac{1}{NHW}\sum_{i=1}^{N}\sum_{h=1}^{H}\sum_{w=1}^{W}R_{hw}^{i})^{2}$$

Yongsen Zhao April,15,2020 18S103199@stu.hit.edu.cn

- Washington DC Mall image: 1280 imes 303 imes 191
- Normalize the gray values of each HSI band to [0,1] using ENVI software
- Select the middle 200 imes 200 for testing
- Crop 20 \times 20 patches from the remaining part and impose additive white Gaussian noise to formulate the training data

three types of noise are employed during test

- different bands have the same noise intensity, σ_n is set from 5 to 100
- the noise intensity of different bands conforms a random probability distribution, labeled as *rand(25)*
- for different bands, the noise intensity is also different but varies like a Gaussian distribution centered at the middle band, labeled as *Gau(200, 30)*

$$\sigma_n = eta \sqrt{rac{exp\{-(k-B/2)^2/2\eta^2\}}{\sum_{k=1}^B exp\{-(k-B/2)^2/2\eta^2\}}}$$

- K = 64, $\lambda = 10$
- Adam with a batchsize of 382
- Use the truncated normal distribution to initialize the weights
- Learning rate starts from 1e-4 and decays exponentially every certain training steps (such as 5000)
- Roughly 300,000 iterations

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Noise Level	Criterion	LRTA [3]	BM4D [2]	LRMR [4]	HSID-CNN [7]	LLRT [5]	NG-Meet [6]	Proposed	
$ \sigma_n = 25 \qquad \frac{MSSIM}{\sigma_n} = 25 \qquad \frac{MPSNR}{0.9926 \pm 0.0002} = 0.9962 \pm 0.0001}{0.9932 \pm 0.0001} = 0.9932 \pm 0.0001} = 0.9968 \pm 0.0001}{0.9932 \pm 0.0001} = 0.9968 \pm 0.0001} = 0.9968 \pm 0.0001 = 0.9968 \pm 0.0001} = 0.9968 \pm 0.0001 = 0.9968 \pm 0.0001} = 0.9972 \pm 0.0001 = 0.9972 \pm 0.0001 = 0.9972 \pm 0.0001 = 0.9972 \pm 0.0001} = 0.9972 \pm 0.0001 = 0.9752 \pm 0.0001 = 0.9752 \pm 0.0001 = 0.9752 \pm 0.0001 = 0.9752 \pm 0.0001 = 0.9796 \pm 0.0001 = 0.9796 \pm 0.0001 = 0.9796 \pm 0.0001 = 0.9795 \pm 0.0001 = 0.9595 \pm 0.0001 = 0.9595 \pm 0.0001 = 0.9575 \pm 0.0001 = 0.9575 \pm 0.0002 = 0.9594 \pm 0.0001 = 0.9575 \pm 0.0002 = 0.9575 \pm 0.0002 = 0.9575 \pm 0.0002 = 0.9575 \pm 0.0002 = 0.9575 \pm 0.0001 = 0.9575 \pm 0.0001 = 0.9575 \pm 0.0002 = 0.9575 \pm 0.0001 = 0.9575 \pm 0.0001 = 0.9575 \pm 0.0001 = 0.9575 \pm 0.0002 = 0.9575 \pm 0.0001 $	$\sigma_n = 5$	MPSNR	39.009 ± 0.0034	41.188 ± 0.0023	$40.878 {\pm} 0.0036$	$41.684 {\pm} 0.0025$	41.532 ± 0.0054	41.781±0.0052	41.580 ± 0.0043	
$ \begin{aligned} \sigma_n &= 25 & \frac{\sigma_n = 25}{MSSIM} & \frac{0.9629 \pm 0.0002}{0.9685 \pm 0.0002} & \frac{0.9809 \pm 0.0001}{0.9809 \pm 0.0001} & \frac{0.9813 \pm 0.0001}{0.9862 \pm 0.0001} & \frac{0.9862 \pm 0.0001}{0.9880 \pm 0.0001} & \frac{0.9902 \pm 0.0001}{0.9902 \pm 0.0001} \\ \sigma_n &= 50 & \frac{MPSNR}{26.832 \pm 0.0052} & \frac{26.752 \pm 0.0034}{26.752 \pm 0.002} & \frac{28.806 \pm 0.0043}{28.968 \pm 0.0039} & \frac{30.759 \pm 0.0115}{31.669 \pm 0.0139} & \frac{31.669 \pm 0.0139}{32.070 \pm 0.0010} \\ \sigma_n &= 75 & \frac{MPSNR}{24.682 \pm 0.0054} & \frac{24.261 \pm 0.0035}{24.261 \pm 0.0035} & \frac{26.306 \pm 0.0046}{26.753 \pm 0.001} & \frac{26.752 \pm 0.0001}{0.9752 \pm 0.0001} & \frac{0.9752 \pm 0.0001}{0.9752 \pm 0.0001} & \frac{0.9762 \pm 0.0001}{0.9752 \pm 0.0001} & \frac{0.9762 \pm 0.0001}{0.9752 \pm 0.0001} & \frac{0.9752 \pm 0.0001}{0.9973 \pm 0.0001} & \frac{0.9752 \pm 0.0023}{0.9973 \pm 0.0002} & \frac{0.9752 \pm 0.0023}{0.9974 \pm 0.0033} & \frac{0.9752 \pm 0.0023}{0.9974 \pm 0.0033} & \frac{0.9752 \pm 0.0023}{0.9974 \pm 0.0033} & \frac{0.9752 \pm 0.0023}{0.9974 \pm 0.$		MSSIM	0.9926 ± 0.0002	0.9962 ± 0.0001	$0.9952 {\pm} 0.0001$	0.9966 ± 0.0001	0.9968 ± 0.0001	0.9966 ± 0.0001	$0.9972{\pm}0.0001$	
$ \sigma_n = 50 \qquad \frac{\text{MPSNR}}{\sigma_n = 75} \qquad \frac{\text{MPSNR}}{\sigma_n = 100} \qquad \frac{\text{MPSNR}}{\sigma_n = rand(25)} \qquad \frac{26.32\pm0.002}{\text{MPSNR}} \qquad 26.832\pm0.002 \qquad 0.983\pm0.002 \qquad 0.9836\pm0.001 \qquad 0.9313\pm0.0001 \qquad 0.9382\pm0.001 \qquad 0.9752\pm0.001 \qquad 0.9752\pm0.001 \qquad 0.9796\pm0.0001 \qquad 0.9796\pm0.0001 \qquad 0.9796\pm0.0001 \qquad 0.9796\pm0.0001 \qquad 0.9796\pm0.0001 \qquad 0.9752\pm0.001 \qquad 0.9752\pm0.001 \qquad 0.9796\pm0.0001 \qquad 0.9796\pm0.0001 \qquad 0.9796\pm0.0001 \qquad 0.9796\pm0.0001 \qquad 0.9765\pm0.001 \qquad 0.9752\pm0.001 \qquad 0.9752\pm0.001 \qquad 0.9796\pm0.0001 \qquad 0.9765\pm0.0001 \qquad 0.9673\pm0.0001 \qquad 0.9555\pm0.0002 \qquad 0.9594\pm0.0001 \qquad 0.9673\pm0.0001 \qquad 0.9673\pm0.0001 \qquad 0.9555\pm0.0002 \qquad 0.9594\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9535\pm0.0002 \qquad 0.9594\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9535\pm0.0002 \qquad 0.9514\pm0.0011 \qquad 0.9535\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0001 \qquad 0.9535\pm0.0002 \qquad 0.9515\pm0.0001 \qquad 0.9535\pm0.0001 \qquad 0.9515\pm0.0001 \qquad 0.9515\pm0.0001 \qquad 0.9515\pm0.0001 \qquad 0.9515\pm0.0001 \qquad 0.9515\pm0.0001 \qquad 0.9515\pm0.0001 \qquad 0.9917\pm0.0004 \qquad 0.9515\pm0.0001 \qquad 0.9917\pm0.0005 \qquad 0.9515\pm0.0$	$\sigma_n = 25$	MPSNR	30.672 ± 0.0033	31.136 ± 0.0025	33.029 ± 0.0023	33.050 ± 0.0028	34.701 ± 0.0097	35.366 ± 0.0094	35.527±0.0104	
$ \sigma_n = 50 \qquad $		MSSIM	0.9629 ± 0.0002	$0.9685 {\pm} 0.0002$	0.9809 ± 0.0001	0.9813 ± 0.0001	$0.9862 {\pm} 0.0\ 001$	0.9880 ± 0.0001	0.9902±0.0001	
$ \frac{M}{\sigma_n = 75} \qquad \frac{M}{M} \frac{0.9243 \pm 0.001}{M} = \frac{0.9203 \pm 0.002}{0.9203 \pm 0.002} = \frac{0.9332 \pm 0.001}{0.9332 \pm 0.001} = \frac{0.9332 \pm 0.001}{0.9332 \pm 0.001} = \frac{0.9732 \pm 0.001}{0.9732 \pm 0.001} = \frac{0.9732 \pm 0.001}{0.9673 \pm 0.001} = \frac{0.9732 \pm 0.001}{0.9955 \pm 0.0001} = \frac{0.9732 \pm 0.001}{0.9955 \pm 0.0001}$	$\sigma_n = 50$	MPSNR	26.832 ± 0.0052	26.752 ± 0.0034	28.806 ± 0.0043	28.968 ± 0.0039	30.759 ± 0.0115	31.669 ± 0.0139	32.070±0.0102	
$ \sigma_n = 75 \qquad $		MSSIM	0.9246 ± 0.0001	$0.9208 {\pm} 0.0002$	$0.9532 {\pm} 0.0001$	$0.9536 {\pm} 0.0001$	$0.9705 {\pm} 0.0001$	0.9752 ± 0.0001	0.9796±0.0001	
$ \frac{\sigma_n = 100}{\sigma_n = rand(25)} \frac{MPSNR}{MSSIM} = \frac{28.200\pm0.0001}{0.9383\pm0.0001} = \frac{0.9192\pm0.0001}{0.9192\pm0.0001} = \frac{0.9273\pm0.0001}{0.9273\pm0.0001} = \frac{0.9323\pm0.0002}{0.9323\pm0.0002} = \frac{0.9394\pm0.0001}{0.9394\pm0.0001} = \frac{0.9673\pm0.0001}{0.9673\pm0.0001} = \frac{0.9673\pm0.0001}{0.9673\pm0.0001} = \frac{0.9673\pm0.0001}{0.9673\pm0.0001} = \frac{0.9673\pm0.0001}{0.9673\pm0.0001} = \frac{0.9673\pm0.0001}{0.9535\pm0.0001} = \frac{0.9673\pm0.0001}{0.9454\pm0.0003} = \frac{0.9673\pm0.0001}{0.9673\pm0.0001} = \frac{0.9673\pm0.0001}{0.9535\pm0.0002} = \frac{0.9394\pm0.0001}{0.9454\pm0.0001} = \frac{0.9673\pm0.0001}{0.9535\pm0.0002} = \frac{0.9394\pm0.0001}{0.9535\pm0.0001} = \frac{0.9673\pm0.0001}{0.9454\pm0.0003} = \frac{0.9673\pm0.0001}{0.9454\pm0.0003} = \frac{0.9673\pm0.0001}{0.9933\pm0.0002} = \frac{0.9973\pm0.0001}{0.991\pm0.0001} = \frac{0.9673\pm0.0001}{0.9454\pm0.0001} = \frac{0.9673\pm0.0001}{0.9535\pm0.0001} = \frac{0.9673\pm0.0001}{0.9454\pm0.0001} = \frac{0.9673\pm0.0001}{0.9916\pm0.0001} = \frac{0.9673\pm0.0001}{0.9916\pm0.0001} = \frac{0.9673\pm0.0001}{0.9914\pm0.0001} = \frac{0.9673\pm0.0001}{0.9917\pm0.0004} = \frac{0.9673\pm0.0001}{0.9914\pm0.0001} = \frac{0.9673\pm0.0001}{0.9914\pm0.0001} = \frac{0.9673\pm0.0001}{0.9914\pm0.0001} = \frac{0.9673\pm0.0001}{0.9914\pm0.0001} = \frac{0.9673\pm0.0001}{0.9914\pm0$	$\sigma_n = 75$	MPSNR	24.682 ± 0.0054	24.261 ± 0.0035	26.306 ± 0.0046	26.753 ± 0.0039	28.385 ± 0.0134	29.116±0.0147	29.862±0.0175	
$ \sigma_n = 100 \qquad \qquad$		MSSIM	$0.8866 {\pm} 0.0001$	0.8670 ± 0.0001	$0.9192 {\pm} 0.0001$	0.9273 ± 0.0001	0.9525 ± 0.0002	0.9594 ± 0.0001	0.9673±0.0001	
$ \sigma_n = rand(25) $ $ \frac{\text{MPSNR}}{\text{MSSIM}} \begin{array}{c} 0.3494 \pm 0.0003 \\ 0.3494 \pm 0.0003 \\ 0.3119 \pm 0.0002 \\ 0.8199 \pm 0.002 \\ 0.8799 \pm 0.0002 \\ 0.8799 \pm 0.0002 \\ 0.9014 \pm 0.0001 \\ 0.9014 \pm 0.0001 \\ 0.9232 \pm 0.0001 \\ 0.9328 \pm 0.0001 \\ 0.9434 \pm 0.0001 \\ 0.9331 \pm 0.0001 \\ 0.9833 \pm 0.0002 \\ 0.9856 \pm 0.0001 \\ 0.9916 \pm 0.0001 \\ 0.9916 \pm 0.0001 \\ 0.9718 \pm 0.0275 \\ 0.9904 \pm 0.0001 \\ 0.9904 \pm 0.0001 \\ 0.9917 \pm 0.0004 \\ $	$\sigma_n = 100$	MPSNR	23.175 ± 0.0048	22.577 ± 0.0054	24.310 ± 0.0047	25.296 ± 0.0043	26.712 ± 0.0145	27.756 ± 0.0083	28.239±0.0176	
$\frac{\sigma_n = rand(25)}{MSSIM} \underbrace{MSSIM}_{0.9331\pm0.0001} \underbrace{0.9833\pm0.0002}_{0.9835\pm0.0002} \underbrace{0.9856\pm0.0001}_{0.9916} \underbrace{0.9916}_{\pm0.0001} \underbrace{0.9718\pm0.0275}_{0.9904\pm0.0001} \underbrace{0.9917\pm0.0004}_{0.9917\pm0.0004} \underbrace$		MSSIM	0.8494 ± 0.0003	0.8119 ± 0.0002	0.8799 ± 0.0002	0.9014 ± 0.0001	$0.9328 {\pm} 0.0001$	0.9454 ± 0.0001	0.9535±0.0002	
$\frac{1}{2} = C_{222}(200, 20) + \frac{\text{MPSNR}}{28.200 \pm 0.0023} = 34.109 \pm 0.0037 = 35.962 \pm 0.0025 = 36.804 \pm 0.0029 = 28.635 \pm 0.0019 = 35.402 \pm 0.0053 = 37.722 \pm 0.0080$	$\sigma_n = rand(25)$	MPSNR	28.843 ± 0.0025	34.424 ± 0.0034	36.094 ± 0.0033	37.367 ± 0.0028	34.360 ± 2.6908	36.040 ± 0.3682	37.301±0.1633	
$\sigma = C_{au}(200, 20)$		MSSIM	$0.9331 {\pm} 0.0001$	$0.9833 {\pm} 0.0002$	$0.9856 {\pm} 0.0001$	0.9916 ± 0.0001	$0.9718 {\pm} 0.0275$	0.9904 ± 0.0001	0.9917±0.0004	
$\sigma_n = Gau(200, 30) \xrightarrow{\text{MSSIM}} 0.9119 \pm 0.0002 0.9794 \pm 0.0001 0.9893 \pm 0.0001 0.9895 \pm 0.0001 0.9094 \pm 0.000 0.9894 \pm 0.0001 0.9929 \pm 0.0001$	$\sigma_n = Gau(200, 30)$	MPSNR	28.200 ± 0.0023	34.109 ± 0.0037	35.962 ± 0.0025	36.804 ± 0.0029	28.635 ± 0.0019	35.402 ± 0.0053	37.722 ± 0.0080	
		MSSIM	0.9119 ± 0.0002	0.9794 ± 0.0001	0.9893 ± 0.0001	0.9895 ± 0.0001	0.9094 ± 0.000	0.9894 ± 0.0001	0.9929±0.0001	

Table 1. Quantitative performance comparison of the denoising results

(a) Clean image (b) HSID-CNN 25.635/0.9235 (c) LLRT 26.644/0.9287 (d) NG-Meet 27.667/0.9442 (e) Proposed 28.233/0.9536

$\sigma_n = 100, Washington \ DC \ Mall$

(a) Clean image (b) HSID-CNN 36.295/0.9927 (c) LLRT 33.857/0.9764 (d) NG-Meet 36.434/0.9912(e) Proposed 37.333/0.9914

 $\sigma_n = Gau(200, 30), Washington DC Mall$

Yongsen Zhao April, 15, 2020 18S103199@stu.hit.edu.cn

Thanks ! Any Questions?

Yongsen Zhao April,15,2020 18S103199@stu.hit.edu.cn