

IEEE ICASSP 2020

IMPROVED NEAREST NEIGHBOR DENSITY-BASED CLUSTERING TECHNIQUES WITH APPLICATION TO HYPERSPECTRAL IMAGES

Claude Cariou^a, Kacem Chehdi^a and Steven Le Moan^b

a - Univ Rennes / Enssat - SHINE/TSI2M team

Institute of Electronics and Telecommunications of Rennes - CNRS UMR 6164,

Lannion, France

claude.cariou@univ-rennes1.fr

b - Massey University, Center for Research in Image & Signal Processing,

Palmerston North, New Zealand

Outline

- Introduction
- Proposed improvements:
 - structure of the nearest neighbor (NN) graph;
 - pointwise density model;
 - applicability to existing clustering methods.
- Experiments on hyperspectral images
- Conclusion

Introduction

- Clustering is a difficult problem in general:
 - Ill-posed: many clustering solutions exist;
 - Often requires hyperparameters;
 - The size of clustering problems is continuously increasing;
 - The dimensionality of data sets too;
- Some clustering methods can avoid specifying the number of clusters:
 - DBSCAN, OPTICS;
 - Mean Shift, Blurring Mean Shift;
 - Affinity Propagation
 - Convex clustering
 - Nearest-neighbor density-based (NN-DB)

Introduction

- Nearest Neighbor Density Based (NN-DB) methods:
 - Modeseek [Duin et al., LNCS 7626, 2012; PRTools]
 - kNNClust [Tran et al., Comput. Stat. & Data Anal. 51, 2006]
 - KNN-DPC [after Rodriguez & Laio, Science 344, 2014]
 - GWENN [Cariou & Chehdi, Proc. IEEE IGARSS, 2016]
- NN-DB methods show interesting properties for clustering purposes:
 - > deterministic
 - require just one parameter: the # of nearest neighbors
 - work well with non-convex clusters

İETR

Introduction

Notations:

- Dataset $\mathbf{X} = {\{\mathbf{x}_i\}_{i=1,...,N}, \mathbf{x}_i \in \mathbb{R}^n, N: \text{#objects}}$
- Metric *d*: Euclidean distance, $d(\mathbf{x}_i, \mathbf{x}_j) = d_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|_2$
- Number of NNs *K*, first assumed constant $\forall \mathbf{x}_i$
- Directed K NN graph: $\mathcal{G} = (\mathcal{X}, \mathcal{X} \times \mathcal{N}_{K}(\mathcal{X}))$

	density estimate	references
Non-parametric model	$\left(\sum_{k\in\mathcal{N}_K(\mathbf{x}_i)}d_{ik}\right)^{-1}$	[Cariou & Chehdi, Proc. IEEE IGARSS, 2016
	$\sum_{k\in\mathcal{N}_{K}(\mathbf{x}_{i})}d_{ik}^{-1}$	[Cariou & Chehdi, SPIE RS Europe, 2018]
	$\exp\left(-\frac{1}{K}\sum_{k\in\mathcal{N}_{K}(\mathbf{x}_{i})}d_{ik}^{2}\right)$	[Du et al., KnowlBased Systems, 2016]
Parametric model	$\sum_{k \in \mathcal{N}_K(\mathbf{x}_i)} \exp\left(-\frac{N.d_{ik}}{\sum_{i=1}^N d_{ij_i^K}}\right)$	[Geng et al., Inform. Science, 2018]
	$\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \sum_{k \in \mathcal{N}_K(\mathbf{x}_i)} \exp\left(-\frac{d_{ik}^2}{2\sigma^2}\right)$	[Le Moan and Cariou, Proc. IVCNZ, 2018]

Introduction

Problem position:

Is there any better NN graph than the classical one?

Objectives:

- Improving NN-DB methods regarding:
 - The structure of the KNN graph;
 - The choice of the pointwise density model;
 - > The generalization of these methods to variable-NN graphs.
- Focused methods [Cariou & Chehdi, Proc. SPIE RS Europe, 2017]
 ➢ KNN-DPC
 - ➤ GWENN-WM
- Focused application: pixel clustering in hyperspectral images

Proposed improvements

1. Variable-K NN graphs

7

- Concept of hubness [Radovanovic et al., Mach. Learn. Res. 2010]
- Hubs are "popular" nearest neighbors among objects
- Hubs are closer than any other objects to their respective cluster center
- > Hubs have inspired modifications of KNN graphs, i.e.

Mutual Nearest Neighbors (MNN) [Stevens et al., IEEE T-GRS 2017]:

Remove edges to transform the original (directed) KNN graph into an undirected graph, such that

$$(\mathbf{x}_i, \mathbf{x}_j)$$
 are connected iff $(\mathbf{x}_i \in \mathcal{N}_K(\mathbf{x}_j)) \land (\mathbf{x}_j \in \mathcal{N}_K(\mathbf{x}_i))$

Proposed improvements

Consequences:

- > The graph no longer has constant K outdegree
- > Popular objects have larger outdegree than others

N = 300 2D-objects

Proposed improvements

2. Local density estimation

Previous works based on constant K outdegree :

$$\rho(\mathbf{x}_i) = \frac{K}{\sum_{\mathbf{x}_j \in \mathcal{N}_K(\mathbf{x}_i)} d(\mathbf{x}_i, \mathbf{x}_j)} \qquad \rho(\mathbf{x}_i) = \sum_{\mathbf{x}_j \in \mathcal{N}_K(\mathbf{x}_i)} \frac{1}{d(\mathbf{x}_i, \mathbf{x}_j)}$$

Proposed variable-K density model:

$$\rho(\mathbf{x}_i) = \frac{K_i}{d(\mathbf{x}_i, \mathcal{N}_{K_i}(\mathbf{x}_i))} , \ 1 \le i \le N$$

Proposed improvements

3. Variable-K NN-DB clustering methods

KNN-Density Peak Clustering

- Find the unique neighbor of each object having the minimum distance among its neighbors of higher density;
- Each object points to its nearest neighbor iteratively until convergence;
- No need for decision graph.

➤ GWENN-WM

- Rank the objects by decreasing local density;
- Assign object's label as weighted mode label of *K*-nearest neighbors previously labelled;
- If none of the K NNs of the current object is labeled yet, give it a new cluster label.
- Proposed improvement: replace regular KNN by MNN graph
 - ightarrow MNN-DPC method
 - \rightarrow GWENN-WM-MNN method

- Application to hyperspectral images:
 - Large number of pixels ($N \sim 10^4$ to 10^7)
 - \circ High dimensionality (dim ~ 10² to 10³)
- > A ground truth is available to assess the clustering results
 - o Adjusted Rand Index [Hubert & Arabie, J. Classif. 1985]
 - Kappa index after confusion matrix reconditioning by Hungarian algorithm [Kuhn, 1955]
- Comparison with
 - $\circ~$ KNN graph-based methods : KNN-DPC and GWENN-WM
 - Fuzzy C-Means [Bezdek, 1981]:
 - Two parameters: C, m (here m = 2)
 - o 20 random restarts
 - DBSCAN [Ester et al., Proc. KDD'96]:
 - Two parameters: *Eps, MinPts*

1. AVIRIS Salinas HSI dataset

AVIRIS Salinas HSI 512x217 pixels 204 bands

Ground reference 54,129 pixels 16 classes

C15: Vineyard untrained C14: Lettuce romaine 7wk C13: Lettuce romaine 6wk C12: Lettuce romaine 5wk C11: Lettuce romaine 4wk C10: Corn sen. gr. wds C9: Soil vineyard develop C8: Grapes untrained C5: Fallow smooth C4: Fallow rough plow C2: Broccoli gr. wds 2 C1: Broccoli gr. wds 1

1. AVIRIS Salinas HSI dataset

1. AVIRIS Salinas HSI dataset

Ground reference

KNN-DPC K=800, C=16 (18) Kappa = 0.7373

MNN-DPC K=1000, C=22 (24) Kappa = 0.7561

Salinas HSI

1. AVIRIS Salinas HSI dataset

K=900, C=22 (24)

Kappa = 0.7582

K=700, C=17 (19)

Kappa = 0.7441

1. AVIRIS Salinas HSI dataset

Ground reference

Minpts=30, Eps=29 Kappa = 0.6399

C=24 Kappa = 0.5424

Salinas HSI

2. AVIRIS Hekia HSI dataset courtesy Prof. Jon Atli Benediktsson, U. Iceland

Ground reference 10227 pixels 12 classes

AVIRIS *Hekla* HSI 560x600 pixels 157 original bands 10 PC bands retained after Minimum Noise Fraction

2. AVIRIS Hekla HSI dataset

Conclusion

- We have proposed a generalization of existing NN-DB clustering methods based on variable-K NN graphs;
- The NN graph was edge-pruned owing to the Mutual Nearest Neighbor (MNN) principle;
- MNN allows to highlight *hubs* in representation spaces, which are best suited for cluster unveiling than traditional medoids;
- NN-DB clustering methods are flexible enough to comply with variable-K NN graphs;
- Preliminary experiments on hyperspectral pixel clustering problems show the superiority of the proposed approach;
- > Need for future investigation on modified NN graphs.