

DECIDABLE VARIABLE-RATE DATAFLOW FOR HETEROGENEOUS SIGNAL PROCESSING SYSTEMS

Yujunrong Ma¹, Jiahao Wu¹, Shuvra S. Bhattacharyya¹, Jani Boutellier²

¹ University of Maryland, United States

² University of Vaasa, Finland

Motivation

- PRUNE (PSM Runtime Environment, Boutellier et al. 2018): A highperformance, dynamic, decidable dataflow model of computation and associated design framework for signal processing applications
- Variable-Rate Dataflow (VRDF, Wiggers et al. 2008): modeling of datadependent communication behavior
 - VRDF can improve model analyzability due to the pre-indicated token rate limits and maintain sufficient expressiveness for adaptive behavior at the same time
- In previous work¹, PRUNE with adaptations for variable token rates has been preliminarily demonstrated to have performance and expressiveness benefits

¹ J. Boutellier and S. S. Bhattacharyya (2017) "Low-power heterogeneous computing via adaptive execution of dataflow actors", IEEE SiPS

Introduction

- This work: VR-PRUNE a high-performance, flexible, dynamic decidable dataflow model of computation
 - Formalization of the preliminary work¹
 - Elaboration of PRUNE Model of Computation and framework

• VR-PRUNE

- is a hybrid between the PRUNE MoC and the VRDF MoC: VR-PRUNE keeps the decidability of PRUNE, but adds to it support for variable token rates
- is a Linux-based dataflow computing framework
- supports OpenCL devices such as GPUs and multicore CPUs

Background: Model of Computation

 A FIFO channel is connected to an actor through an actor

port

- An output port p⁺ can be connected to multiple FIFOs, but every input port p⁻ has only one FIFO connected to it
- Each FIFO has unique source and sink ports.

VR-PRUNE: MoC

VR-PRUNE Port Types

- 1) Static regular ports (SRP): Fixed token consumption/production rate
- 2) Dynamic regular ports (DRP): Two fixed token rates, which are called active token rate atr(p) and inactive token rate itr(p) respectively

VR-PRUNE Actor Types

- 1) Static processing actor:
 - All ports have just one token rate, the <code>atr</code>
- 2) Configuration actor:
 - Have one or multiple control output ports, which must be connected to the control input port of a dynamic actor or a dynamic processing actor
 - The control output ports must be SRPs with a token rate of unity

VR-PRUNE: MoC

VR-PRUNE Actor Types (cont'd)

- 3) Dynamic Actor (DA)
 - At least one control port (1,2,...)
 - At least one dynamic rate port (DRP) (1,2,...)
 - Any number of static rate ports (SRPs) (0,1,2,...)
- 4) Dynamic Processing Actor (DPA)
 - At least one control port (1,2,...)
 - At least one dynamic rate port (DRP) on both input and output side (2,...)
 - Any number of static rate ports (SRPs) (0,1,2,...)

Note: For VR-PRUNE, the token rates of DRPs in DA and DPA can be set to any integer value between 0 and atr(p).

VR-PRUNE: MoC

Other constraints

• Symmetric-rate dataflow behavior: The token consumption rate equal the production rate for every FIFO

VR-PRUNE: Design Rules

• Linked port control rule

For each pair $\{p_x, p_y\}$ of linked DRPs, the ports must be controlled by the same control output port p_q , and by the same element of the associated control token

VR-PRUNE: Design Rules

Connecting subchain rule:

Actor a_i must be a SPA or DPA
 Each connecting subchain, to which actor a_i belongs, must be associated with the two dynamic actors a and b

 In total, VR-PRUNE has five design rules – the rest are specified in the paper

VR-PRUNE: Dynamic Processing Graph

 A DPG consists of one configuration actor, two dynamic actors and any number of DPAs or SPAs

• FIR1 and FIR2 are dynamic processing actors, Poly and Add actors are DAs with DPRs on output and input side each

VR-PRUNE: Control Table

Table 1. Control table for the graph in Fig. 2.

	p_{p3}	p_{p4}	p_{f11}	p_{f13}
p_{c1}	[02]	-	[02]	[02]
p_{c2}	-	[03]	-	-
	p_{f21}	p_{f23}	p_{a3}	p_{a4}
p_{c1}	-	-	[02]	-
p_{c2}	[03]	[03]	-	[03]

- Rows are indexed by control output ports
- Columns are indexed by dynamic regular ports (DRPs)
- Blank entries indicate the absence of any control relationship
- Positive-valued entries specify indices into control

VR-PRUNE: Experiments

 Table 2. Platforms used for experiments.

Tag	GPPs	GPU	Operating System
i7-940MX	Intel i7-6700HQ @ 2.60 GHz	NVidia GeForce 940MX	Ubuntu 18.04, g++ 7.0.0
i7-GTX1080	Intel i7-8700K @ 3.70GHz	NVidia Geforce GTX1080	Ubuntu 18.04, g++ 7.0.0

The designer provides actor descriptions in C or OpenCL, based on which the VR-PRUNE compiler generates a top level file that realizes inter-actor communication

VR-PRUNE: Experiments

Fig. 3. VR-PRUNE model for the DU-DPD use case.

Fig. 4. Time spent in DU-DPD under VR-PRUNE on i7-GTX1080, as a function of samples used for learning.

VR-PRUNE allows reducing the number

of samples used for runtime learning

Dynamic-token rate feature allows any number of samples between 1 and X

VR-PRUNE: Experiments

Fig. 5. The adaptive CNN application.

Components: two GPU-accelerated convolution layers followed by a GPU-accelerated dense layer and two more dense layers that have been combined into a single actor

VR-PRUNE: Performance

Fig. 6. Time spent in the CNN application as a function of % of frames processed: PRUNE (dashed line) vs. VR-PRUNE (solid line) on i7-GTX1080 (left) and i7-940MX (right).

The CNN inference (on/off) for each frame was randomly varied at runtime achieving the average percentage of frames processed for 0%, 12.5%, 25.0%, 50.0% and 100%, measuring the execution time for each percentage value

Conclusion

- VR-PRUNE is a high-performance, flexible, dynamic decidable dataflow model of computation
 - Combines the high-performance, decidable PRUNE Model of Computation with some features of the VRDF Model of Computation
- The experiments show that the variable token rate feature of VR-PRUNE does not impose any overhead compared to conventional PRUNE – in contrast, VR-PRUNE is computationally slightly more efficient than conventional PRUNE

More sources

• PRUNE is introduced in more detail in the following paper

J. Boutellier, J. Wu, H. Huttunen, and S. S. Bhattacharyya. PRUNE: Dynamic and decidable dataflow for signal processing on heterogeneous platforms. *IEEE Transactions on Signal Processing*, 66 (3), 654-665, 2018 https://ieeexplore.ieee.org/document/8106744

• The main PRUNE repository:

https://gitlab.com/jboutell/Prune

