
Diagonalizable Shift and Filters for Directed Graphs based on the Jordan-Cheva

Panagiotis Misiakos, Electrical and Comp Chris Wendler and Markus Püschel, Con

Goal

Digraph Signal Processing (DGSP): Signals indexed by nodes of directed graphs [A. Sandryhaila and J. Moura, 2013]

	0	1	1	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	0	0	0	0
A =	0	$\begin{array}{c} 1 \\ 0 \end{array}$	0	0	1	0	0	0
	0	0	0	1	0	0	0	0
	0	$\begin{array}{c} 0\\ 0\end{array}$	0	0	1	0	0	0
	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	1
	0	0	0	0	0	0	0	0
	-							_

Shift = adjacency matrix A*Filters* = polynomials in A*Filter Algebra* $\langle A \rangle \cong \mathbb{C}[x]/m_A(x)$

Problem: In general, A may not be diagonalizable

Our work: Diagonalizable Graph Shift:

• Identify sub-algebra of diagonalizable filters

• Compute associated diagonalizable shift A_D

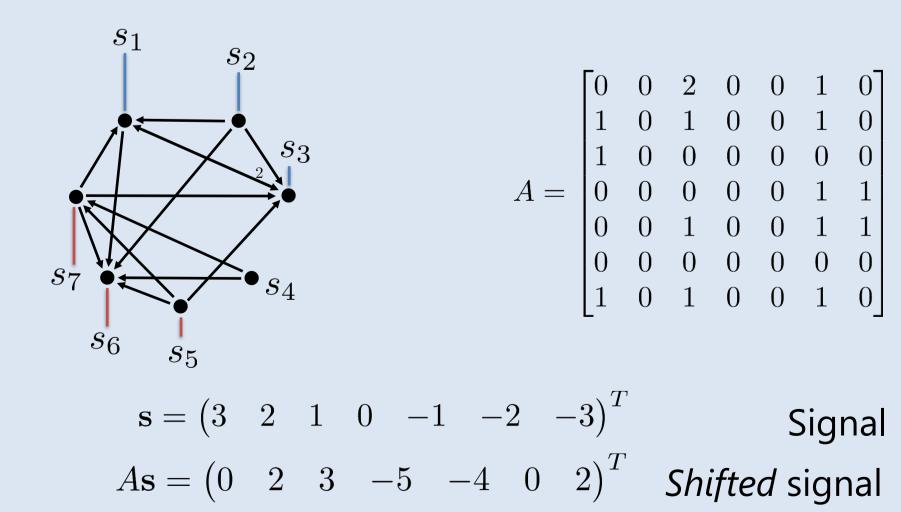
 $\langle A_D \rangle \le \langle A \rangle$

Digraph Signal Processing

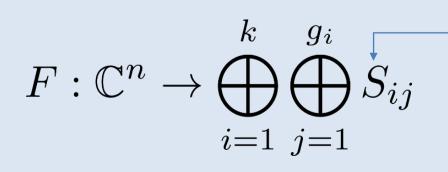
Directed Graph

G(V, E, A)

Graph Signal

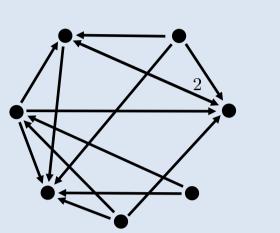

 \rightarrow adjacency matrix with weights

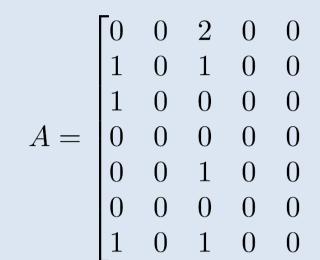
 $s: V \to \mathbb{C}; v \mapsto s_v$


Graph Shift

 $A: \mathbb{C}^n \to \mathbb{C}^n; \mathbf{s} \mapsto A\mathbf{s}$

Example: Signal on Digraph

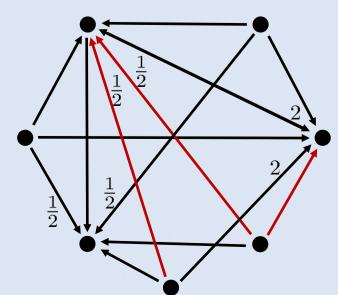

Graph Fourier Transform

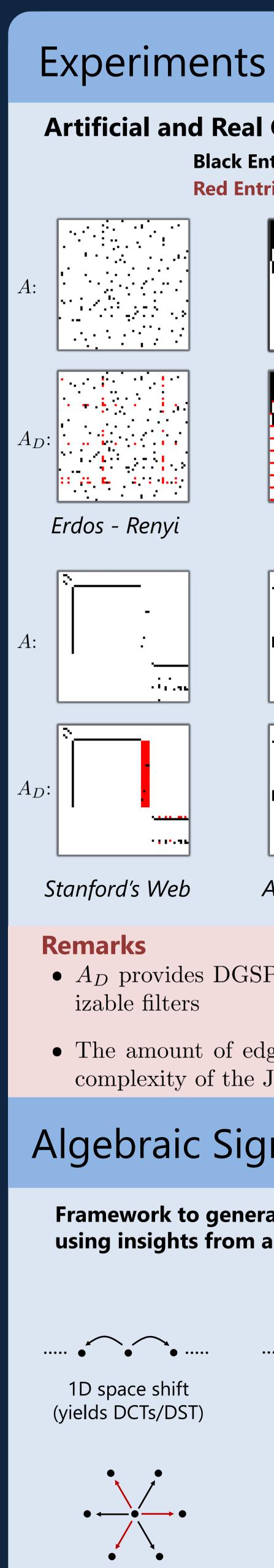


pure frequencies (Jordan subspaces)

Matrix Representation $F = V^{-1}$ where $A = VJV^{-1}$

alley Decomposition oputer Engineering, NTU Athens oputer Science, ETH Zürich	
Digraph Signal Processing	Example
Graph Filters $H : \mathbb{C}^{n} \to \mathbb{C}^{n}; H = p(A) = \sum_{i=0}^{d-1} h_{i}A^{i} (\text{Polynomial in } A)$ $H(As) = AH(s) (\text{Shift-Invariance})$ Filter Algebra $\langle A \rangle \cong \mathbb{C}[x]/m_{A}(x)$ Frequency Response $Shift's \text{ response } FAF^{-1} = J = \bigoplus_{i} \int_{d_{i}}^{\bullet} \int_{d_{i}}^{Ordan Block} \int_{Size of block}^{\bullet} FHF^{-1} = Fh(A)F^{-1} = h(J) = \bigoplus_{i} h(J_{d_{i}}(\lambda_{i}))$ $h(J_{d}(\lambda)) = \begin{pmatrix} h(\lambda) & \frac{h'(\lambda)}{1!} & \cdots & \frac{h^{(d-1)}(\lambda)}{(d-2)!} \\ 0 & h(\lambda) & \cdots & \frac{h^{(d-1)}(\lambda)}{(d-2)!} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & h(\lambda) \end{pmatrix} Computation of polynomial evaluated on Jordan Block$	Directed Graph
Diagonalizable Shift and Filters	Diagonalizable Shift Computation
Theorem (Jordan–Chevalley) Any matrix A can be decomposed uniquely as $A = A_D + A_N$ • A_D is diagonalizable and A_N is nilpotent • A_D and A_N are polynomials in A • $A_DA_N = A_NA_D$ Consequences for DGSP Diagonalizable shift $(A_D) \leq \langle A \rangle$ is the sub-algebra of all diagonalizable filters $How \ do \ we \ compute \ A_D$? Solution: Hermite Interpolation For all eigenvalues λ_i $p(\lambda_i) = \lambda_i, p'(\lambda_i) = 0,, p^{(d_i-1)}(\lambda_i) = 0$ (1) $\tilde{p}(\lambda_i) = \lambda_i, \tilde{p}'(\lambda_i) = 0,, \tilde{p}^{(a_i-1)}(\lambda_i) = 0$ (2) d_i is the dimension of the largest Jordan block of λ_i a_i is algebraic multiplicity of λ_i $\tilde{p}(x) \equiv p(x) \mod m_A(x)$ $J_D = \tilde{p}(J) = p(J)$ is the diagonal part of J	Hermite Interpolation yields $p(x) = \frac{1}{2}x^3$ $\tilde{p}(x) = \frac{1}{4}x^5 \equiv \frac{1}{2}x^3 = p(x) \mod x^3(x^2 - 2)$ Diagonalizable Shift $J_D = \frac{1}{4}J^5 = \frac{1}{2}J^3 = \operatorname{diag}(0, 0, 0, 0, 0, -\sqrt{2}, \sqrt{2})$ $A_D = \frac{1}{4}A^5 = \frac{1}{2}A^3 = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix}$ Jordan - Chevalley Decomposition $A = A_D + A_N = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 2 & 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 2 & 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 & 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 2 & 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
Diagonalizable Shift $A_D = \tilde{p}(A) = p(A) = p(VJV^{-1}) = VJ_DV^{-1}$ Properties of Diagonalizable Shift • FA_DF^{-1} is the diagonal part J_D of J • $m_{A_D}(x) = (x - \lambda_1)(x - \lambda_k)$ • Sub-algebra of diagonalizable filters is $\langle A_D \rangle \cong \mathbb{C}[x]/m_{A_D}(x)$	Graph associated with ShiftImage: transformed by the second



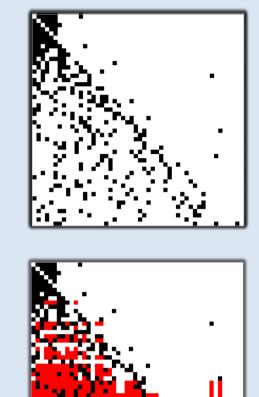


	-	d_1				d_2	d_3
	0	1	0	0	0	0	0
	0	0	1	0	0	0	0
	0	0	0	0	0	0	0
$FAF^{-1} = J =$	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	$-\sqrt{2}$	0
	0	0	0	0	0	0	$\sqrt{2}$
	+		a_1	1		$\rightarrow \overbrace{a_2}$	$\overrightarrow{a_3}$

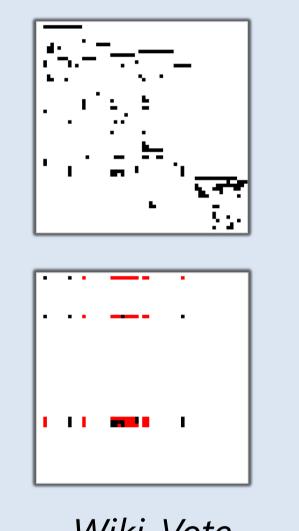
$$p(x) = \frac{1}{2}x^{3}$$
$$\tilde{p}(x) = \frac{1}{4}x^{5} \equiv \frac{1}{2}x^{3} = p(x) \mod x^{3}(x^{2} - 2)$$

$$J_D = \frac{1}{4}J^5 = \frac{1}{2}J^3 = \text{diag}(0, 0, 0, 0, 0, 0, -\sqrt{2}, \sqrt{2})$$
$$A_D = \frac{1}{4}A^5 = \frac{1}{2}A^3 = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 & 1 & 0\\ 1 & 0 & 1 & 0 & 0 & \frac{1}{2} & 0\\ 1 & 0 & 0 & 0 & 0 & 0 & 0\\ \frac{1}{2} & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

FILZürich


National Technical **University of** Athens

Artificial and Real Graphs

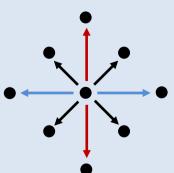

Black Entries: Original edges **Red Entries**: Newly added edges

Albert - Barabasi

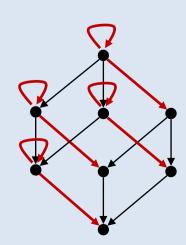
Wiki-Vote

• A_D provides DGSP using a sub-algebra of diagonal-

• The amount of edges added by A_D depends on the complexity of the Jordan Normal Form.


Algebraic Signal Processing (ASP)

Framework to generalize standard, linear, time DSP using insights from abstract algebra


2D hexagonal shifts

1D generic next neighbor shift

graph shift (yields graph DSP)

2D quincunx shifts

set shifts

http://www.ece.cmu.edu/~smart/ https://acl.inf.ethz.ch/research/ASP/